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Abstract

Silicon-based technology has in no doubt played the pivotal
role in our civilization. Our lives have dramatically changed in every
way, our productivity has increased, and our quality of life has
advanced beyond imagination, and this all was majorly due to the
discovery of semiconductors. Decades have passed, and we now
have at our disposal advanced electronics as a product of a very
mature technology. The advances in hardware capabilities have
been taking steady steps for years, and our fabrication techniques

have matured into stable low-error processes.

However, the natural evolution of technology is inevitable, and
this is what the silicon based technology will face sooner or later.
Moore’s law has been accurately applied steadily since its inception,
but the core of the law cannot be indefintely applicable. Although
transistor sizes have decreased dramatically since their invention,
with the 50% decrease rate Moore postulated, transistors are now
approaching atomic level. The wunavailabilty of fabrication
technology at this scale, the instability at this resolution, and the
increased error rate led to the conclusion that we need a replacement

for silicon-based technology soon.

Various technologies have been proposed to replace silicon-
based semiconductors. Carbon nanotubes are among the more
prominent replacements due to their advantages in speed, power and
size. The challenge is how to assemble carbon nanotubes to form a
circuit. Our current top-down approach used in photolithography is

not capable of assembling devices with that small size, and thus an




alternative approach to the whole fabrication methodology was

researched.

Self-assembly relies on the bottom-up contruction of the
circuit, without the interference of assembling equipment. The
concept is similar to how biological cells assemble autonomously to
form a complex organ. Yet in the nanoscale DNA was used to
assemble carbon nanotubes; an autonomous process without our

interference.

By leveraging the unique structure of DNA and it’s ability to
form shapes through controlling the sequences of a DNA strand, a
lattice was built autonomously using DNA. The lattice will act as
the scaffold on which the carbon nanotubes are assembled to form a

circuit.

This thesis presents a novel parallel architecture to perform
realtime median filtering of a stream of images. The architecture is
then put through the design flow of DNA-based self-assembled
circuits to produce the final output, consisting of a set of DNA
sequences and their assembly order. The carbon nanotube based
circuit is simulated to produce power and timing results and these
results are compared to the CMOS implementation of the
architecture. The advantages of using carbon nanotubes in both
power and delay are demonstrated. The tools developed to aid in the

design of self assembled circuits are presented.
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