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Abstract 

Silicon-based technology has in no doubt played the pivotal 

role in our civilization. Our lives have dramatically changed in every 

way, our productivity has increased, and our quality of life has 

advanced beyond imagination, and this all was majorly due to the 

discovery of semiconductors. Decades have passed, and we now 

have at our disposal advanced electronics as a product of a very 

mature technology. The advances in hardware capabilities have 

been taking steady steps for years, and our fabrication techniques 

have matured into stable low-error processes. 

However, the natural evolution of technology is inevitable, and 

this is what the silicon based technology will face sooner or later. 

Moore‟s law has been accurately applied steadily since its inception, 

but the core of the law cannot be indefintely applicable. Although 

transistor sizes have decreased dramatically since their invention, 

with the 50% decrease rate Moore postulated, transistors are now 

approaching atomic level. The unavailabilty of fabrication 

technology at this scale, the instability at this resolution, and the 

increased error rate led to the conclusion that we need a replacement 

for silicon-based technology soon. 

Various technologies have been proposed to replace silicon-

based semiconductors. Carbon nanotubes are among the more 

prominent replacements due to their advantages in speed, power and 

size. The challenge is how to assemble carbon nanotubes to form a 

circuit. Our current top-down approach used in photolithography is 

not capable of assembling devices with that small size, and thus an 



 

 

alternative approach to the whole fabrication methodology was 

researched. 

Self-assembly relies on the bottom-up contruction of the 

circuit, without the interference of assembling equipment. The 

concept is similar to how biological cells assemble autonomously to 

form a complex organ. Yet in the nanoscale DNA was used to 

assemble carbon nanotubes; an autonomous process without our 

interference. 

By leveraging the unique structure of DNA and it‟s ability to 

form shapes through controlling the sequences of a DNA strand, a 

lattice was built autonomously using DNA. The lattice will act as 

the scaffold on which the carbon nanotubes are assembled to form a 

circuit. 

This thesis presents a novel parallel architecture to perform 

realtime median filtering of a stream of images. The architecture is 

then put through the design flow of DNA-based self-assembled 

circuits to produce the final output, consisting of a set of DNA 

sequences and their assembly order. The carbon nanotube based 

circuit is simulated to produce power and timing results and these 

results are compared to the CMOS implementation of the 

architecture. The advantages of using carbon nanotubes in both 

power and delay are demonstrated. The tools developed to aid in the 

design of self assembled circuits are presented. 
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