

The Value of Neuronavigation in Deeply Seated Brain Lesions

An Essay Submitted
In partial fulfillment of the requirements for the Master degree in General Surgery

By

Ehab Abd EL Haleem Abd El Salam

M.B,; B.Ch.

Supervised by

Prof. Dr.

Faheem All El Bassiony

Professor of General Surgery, Cairo University

Prof. Dr.

Mostafa Wagih Kotb

Professor of Neurosurgery, Cairo University

Prof. Dr.

Sherif Gamal Al Din El Mekawi

Assistant Professor of Neurosurgery, Cairo university

2009

قَالُوا سُبْحَانَكَ لاَ عَلْمُ لِناً إِلاَّ ماَ عَلَمْتُناً إِلاَّ ما عَلَمْتُناً إِلاَّ ما عَلَمْتُناً إِلَّا ما عَلَمْتُناً إِلَّا ما عَلَمْ الْحَكِيمُ الْحَكِيمُ

صلق الله العظيمر (سورة البقرة- الآية ٢٢)

Acknowledgement

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who continues to bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

I am greatly honored to express my thanks and gratitude to Prof. Dr. Faheem Aly El Bassiony, Professor of General Surgery, Faculty of Medicine, Cairo University, for guidance, great help encouragement and his creative support throughout the whole work up of this essay.

I would like to express my thanks and gratitude to Professor Dr. Mostafa Wagih Koth, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his valuable help, advice and his creative support for me to accomplish this work.

I am very much indebted to Dr. Sherif Gamal Al Din El Mekawi, assistant professor of neurosurgery, Faculty of Medicine, Cairo University, for his kind supervision, valuable advices, constructive criticism and indispensable help throughout this work.

Last but not least, I would like to thank my family for their great help and support and every person who helped me during this work especially my dear colleagues in neurosurgical department, Faculty of Medicine, Cairo University, for their great help in this work.

This work is dedicated to:

All my family and

My Wife

Contents

Contents

	Subject	Page
•	List of abbreviation	vi
•	List of tables	vii
•	List of figures	viii
•	Abstract & Aim of the work	1-5
•	Chapter one: Introduction	6-9
•	Chapter two: Imaging of brain tumors	10-15
•	Chapter three: Historical back ground	16-28
•	Chapter four: Data processing & usage	29-42
•	Chapter five: Components of neuronavigation	43-55
	Other systems of neuronavigation	56-62
•	Chapter six: Advantages of neuronavigation	63-68
•	Chapter seven: Accuracy of neuronavigation	69-74
•	Chapter eight: Application of neuronavigation	75-81
•	Chapter nine: Future perspectives of neuronavigation	82-100
•	Chapter ten: Case presentation	101-113
•	Chapter eleven: Summary & Conclusion	114-118
•	Chapter Twelve: References	119-138
•	Arabic summary	

List of abbreviation

AVM : Arteriovenous malformation

CT : Computerized tomography

DTI : Diffusion tensor imaging

fMRI : Functional magnetic resonance imaging

IOUS : Intraoperative ultrasonography

LEDs : Light emitting diodes

MRI : Magnetic Resonance Imaging

SPECT : Single photon emission computed tomography

List of Tables

Table	Title	Page
No.		No.
1	Comparison of MRI, CT and IOUS	14,15
2	CT scan protocol for neuronavigation	41
3	MR scan protocol for neuronavigation	42
4	Strength & weaknesses of GE system	57
5	Strength & weaknesses of Medtronic system	59
6	Strength & weaknesses of Stryker system	61
7	Advantages of neuronavigation for the surgeon	68

List of figures

List of figures

Figure No.	Title	Page No.
1.	Components of a standard frameless stereotaxy system	31
2.	Brain Lab VectorVision workstation	51
3.	Physical characteristics of the cameras	52
4.	Mayfield adapter	53
5.	Neuronavigation tools	54
6.	Case of an arachnoid cyst that was removed endoscopically with the guidance of the neuronavigation system (image from the navigation workstation).	55
7.	Image fusion between functional and structural MRI data	93
8.	Ultrasound-based neuronavigation	96
9.	Brain shift detection using corresponding any place slices from MRI (top row) and ultrasound (bottom row)	97

Abstract

&

Aim of work

Abstract

Neuronavigation provides intraoperative orientation to the surgeon, helps in planning a precise surgical approach to the targetted lesion and defines the surrounding neurovascular structures. Incorporation of the functional data provided by functional MRI with neuronavigation helps to avoid the eloquent areas of the brain during surgery. An intraoperative MRI enables radical resection of the lesions, the possibility of immediate control for tumor remnants and updates of neuronavigation with interaoperative images to compensate for brain shift.

Keywords

Neuronavigation, functional MRI, stereotaxy, brain lab, deeply seated brain lesions

The Value of Neuronavigation in Deeply Seated Brain Lesions

Image-guided neurosurgery (Neuronavigation) or frameless stereotactic surgery has made a tremendous impact over the past few years. It provides a patient-specific three-dimensional (3-D) anatomy for preoperative planning and Intraoperative navigation thus helping the surgeon to perform complicated procedures with accuracy and safety (**Tasker**, **1996**).

Exact targeting of small brain lesions, even in subcortical and deeply located brain areas, is still a challenge to neurosurgeons. Information from two-dimensional images must be transferred to the three dimensional spaces of the brain. With the development of detailed imaging techniques, stereotactic neurosurgery is now widely used for the treatment of small and deeply located pathological lesions in the brain (**McInerney and Roberts, 2000**).

The application of Neuronavigation to the surgical resection of brain tumors provides information that allows the use of minimal craniotomies, accurately localizes subcortical lesions, and may assist in determining lesion boundaries (**Hassenbusch et al., 1991**).

The principle of interactive image-guided neurosurgery is to keep the imaging data as long as possible in its original digital format by transferring it to a computer workstation dedicated to the operating room and allowing a direct interaction with the data. With the help of the computer and an intraoperative position, sensing system-reconstructed image can be presented allowing for accurate, dynamic, and interactive, three-dimensional localization of surgical targets and trajectories (**Koivukangas et al., 1999**).

The challenges presented to the neurosurgeon especially glial neoplasms include their often deep-seated location within eloquent parenchyma, their irregularly shaped outlines, and their ill-defined margins due to parenchymal invasion. The neuronavigation system proved to be very helpful at many stages of these operations (Maciunas et al., 2002).

Aim of the work

- 1. To evaluate the advantage and disadvantage of neuronavigation system.
- 2. To study the efficacy and limitations of neuronavigation in the surgery of intracranial lesions.

Introduction

Introduction

Imagine for a moment, if you will, that you are the pilot of one of those early propeller-powered airplanes flying over the South American Andes without all the modern navigation instruments, and you encounter worsening weather conditions ending up in totally non-transparent fog. Visual orientation neither allows for continuation of your journey nor for even partly secure emergency landing because of missing landmarks that could help you to find an appropriate area.

Neurosurgeons once in a while end up in such a situation while trying to find particularly small lesions in the depth of the brain or to resect a complex brain tumor. Intracranial localization is a major challenge in neurosurgery and a precise sense of complex three-dimensional anatomic relationships has to be maintained in order to successfully perform any operation (*Maciunas*, 1993). The art of surgical navigation has traditionally been taught in such a way that specific landmarks had to be identified that could then be used as touchstones during operations. Venturing deeper into subcortical parenchyma has demanded from the neurosurgeon distinctive skill, judgment, experience and apprenticeship (*Maciunas* 1999).

Navigation instruments found their place in modern aircraft many decades ago. Pilots don't have to trust any more only their own memory and printed maps that do not include any actual weather information. Radar, continous weather monitoring and satellite-based navigation update computerized maps in real-time. In