PREVALENCE OF ANTIPHOSPHOLIPID ANTIBODIES IN PATIENTS WITH CHRONIC HEPATITIS C IN CORRELATION WITH LIVER INJURY

Thesis Submitted in Partial Fulfillment of Master Degree in Internal Medicine

By

Mohamed Osama Aly Aly

M.B., *B.Ch*.

Under Supervision of

Professor Dr. Ahmed Shawky El sawaby

Professor of Internal Medicine and gastroenterology Faculty of Medicine, Ain Shams University

Professor Dr. Mohamed Abdel Maboud Mohamed

Professor of Internal Medicine and gastroenterology Faculty of Medicine, Ain Shams University

Dr.Sameh Ahmed Abdel-Bary

Lecturer of Internal Medicine
Faculty of Medicine, Ain Shams University

2009

Introduction

Antiphospholipd antibodies (APAs) are autoantibodies with an affinity to anionic phospholipids

They are organ nonspecific antibodies that have been reported in various clinical conditions such as deep venous thrombosis, arterial occlusive events (eg, stroke, myocardial infarction), and recurrent fetal loss and thrombocytopenia.

They are also associated with vasospastic phenomena such as migraine headache, Raynaud phenomenon, and transient ischemic attack (TIA). However, the pathogenesis and clinical significance of these antibodies are still unclear (*Wilson et al.*, 1999).

Also various infectious diseases can induce Antiphospholipid antibodies, Anticardiolipin antibodies (ACL) have been detected in various infectious diseases particularly of viral origin ,such as human immunodeficiency virus, hepatitis A and mumps (*Mackworth-Young et al.*, 1991)(*Mcneil*,1992).

These antibodies are not usually associated with thrombotic events, as happens with autoimmune diseases, in which these antibodies need the presence of 3_2 -glycoprotein I (β 2GPI) which bears the epitope(s) for (ACL), (*Cervera et al.*, 2003).

There are several kinds of antiphospholipid antibodies. The two most commonly measured kinds are lupus anticoagulant (LA) and anticardiolipin antibody (ACL). Lupus anticoagulant and anticardiolipin antibody are closely related, but are not the same antibody. This means that a person can have one and not the other (*Gharavi et al.*, 1990).

For example, in various studies, 8% to 65 % of people with lupus have the lupus anticoagulant, and 25% to 61 % have anticardiolipin antibody. These antibodies can also be found in people who do not have lupus (*Gharavi et al.*, 1990).

There are other antiphospholipid antibodies, but they are not routinely measured. These include anti-beta 2 glycoprotein I, anti-prothrombin, the "false-positive" test for syphilis (*Gharavi et al.*, 1990).

The World Health Organization has declared hepatitis C a global health problem, with approximately 3% of the world's population (roughly 170-200 million people) infected with HCV. In the US, approximately 3 million people are chronically infected, many of whom are still undiagnosed. In Egypt the situation is quite worse, as The national prevalence rate of HCV antibody positivity has been estimated to be between 10-13% in 2002 and contains the highest prevalence of HCV in the world (*Mohamed*, 2004).

Recently, the estimated prevalence rate in Egypt is about 15% (*EMH*, 2007)

The mechanisms whereby HCV circumvents immune response and establishes persistent infection are currently undefined. It is well known that the specific immune response to any viral infection is primed by macrophages and dendritic cells that present viral proteins to B cells, helper T cells, and cytotoxic T cells. Progression to persistent infection and the immunologic mechanisms of liver injury are the consequence of complicated interactions between the virus and host. Identification of immunologic correlates of viral clearance may contribute to the development of an effective vaccine and better therapy for HCV infection. (*Guidotti*, 1999).

Aim of the Work:

In the present study we aim to investigate the prevalence and clinical significance of antiphospholipid antibodies in chronic hepatitis C infection and their relationship with the disease progression.

ACKNOWLEDGMENT

First and foremost, I thank Allah, who gave me the strength to accomplish this work.

Words cannot express my sincere gratitude and appreciation to Prof. Dr. Ahmed Shawky El sawaby, professor of Internal Medicine Gastroenterology, Faculty of Medicine Ain Shams university; I had the honor to work under his supervision, I appreciate his generous guidance, keen interest and precious time he offered me throughout his study. His scientific advices were kindly given to me and are beyond acknowledgment.

I would like to express my sincere indebtedness and profound gratitude to, Dr. Mohamed Abdel-Maboud Mohamed Assistant Professor of Internal Medicine & Gastroenterology, Faculty of Medicine, Ain Shams University, for his continuous guidance, valuable suggestions and keen supervision throughout the work.

I wish also to express my deep gratitude to Dr. Sameh Ahmed Abdel-Bary, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University, for his continuous support, valuable remarks meticulous supervision and for offering me much of his time and effort throughout this study.

	Mohamed Osama ALy Aly
1	
1	

List Of Abbreviations

ACL (aCL)	Anti cardiolipin antibodies		
AFM	Atomic force microscopic		
ANA	Anti nuclear antibodies		
Anx A5	Annexin A 5		
APC	Activated protein C		
APL (aPL)	Anti phospholipid antibodies		
APS	Anti phospholipid syndrome		
ARF	Alternative reading frame		
ARFP	Alternative reading frame protein		
BAFF	B lymphocytes activating factor		
b-DNA	Branched DNA		
BVDV	Bovine viral diarrhea virus		
CAR	Coxsackievirus and adenovirus receptor		
CCN2	Cysteine-rich 61/connective tissue growth factor		
	neuroblastoma overexpressed		
ССР	anti-cyclic citrullinated peptide		
CCR7	Chemokine (C-C motif) receptor 7 (mediator of EBV effects		
	on B lymphocytes. This receptor is expressed in various lymphoid tissues and activates B and T lymphocytes)		
CLDN1	Claudin- 1		
CMV	Cytomegalo virus		
CsA	Cyclosporine A		
CTGF	Connective tissue growth factor		
CYP2E1	Cytochrome P450 2E1 (involved in metabolism of		
	xenobiotics)		
DC	Dendritic cells		
DC-SIGN	Dendritic cell-specific intercellular adhesion		
	molecule-3 grabbing non integrin		
EBV	Ebstein barr virus		
EC	Endothelial cell		
ECE	Endothelin converting enzyme		
ET1	Endothelin-1		
F	Frame shift		
FGF	Fibroblast growth factor		
FI	Fibrosis index		
G1cNAc	N-acetyl-beta-glucosamine		

646	Cl		
GAG	Glycosaminoglycans		
GBV-B	GB virus B (hepatotrophic virus closely related to HCV)		
HAI	Hepatitis activity index		
HBV	Hepatitis B virus		
HCC	Hepatocellular carcinoma		
HCV	Hepatitis C virus		
HCVcc	HCV cell culture system		
HCVpp	Hepatitis C virus pseudo particles		
HGF	Hepatocyte growth factor		
HIV	Human immunodeficiency virus		
HNE	4-hydroxynonenal		
HRP	Horseradish peroxidase		
Huh-7	Human hepatoma cell line		
ICAM-1	Intercellular adhesion molecule-1		
IGF	Insulin-like growth factor		
IRES	Internal ribosome entry site		
IRF-3	Interferon regulatory factor 3		
JAK-STAT	Janus kinases & Signal Transducers & Activators of		
	Transcription		
LA	Lupus anticoagulant		
LDLR	Low density lipoprotein receptor		
LKM	Anti liver kidney microsomal antibodies		
LPs	lipopolysaccharides		
L-SIGN	Liver /lymph node –specific intercellular adhesion		
	molecule-3-grabbing integrin		
МАРК	Mitogen-activated protein kinase		
MC	Mixed cryoglobulinemia		
MCP-1	Monocyte chemotactic peptide		
MDC	Myeloid derived dendritic cells		
МНС	Major histocompatibility complex		
MMP-2	Matrix metalloproteinase-2		
MPGN	Membrano proliferative glomerulonephritis		
MT1-MMP	Membrane type 1 matrix metalloproteinase		
NASH	Non-alchoholic steatohepatitis		
NF-KB	Nuclear factor KB		
NKs	Natural killer cells		
NOSA	Non –organ specific antibodies		
O.D	Optical density		
ORF	Open reading frame		
PBMCs	Peripheral blood mononuclear cells		

PCT	Porphyria cutanea tarda		
PDC	Plasmacytoid derived dendritic cells		
PDGF	Platelet derived growth factor		
PPARs	Peroxisomal proliferator activated receptors		
PT	prothrombin		
RA	Rheumatoid arthritis		
RdRp	RNA dependent RNA polymerase		
RNS	Reactive nitrogen species		
ROS	Reactive oxygen species		
SLE	Systemic lupus erythematosus		
SMA	Anti smooth muscle antibodies		
SR-BI	Scavenger receptor class B type I		
TGF	Transforming growth factor		
Th1 &Th2	T helper cells 1&2		
TIMP	Tissue inhibitor of metalloproteinase.		
TLR2	Toll like receptor 2		
TMA	Transcription mediated amplification		
TMB	Tetrmethylbenzidine		
tPA	Tissue plasminogen activator		
Tregs	Regulatory T cells		
VDRL	Veneral disease research laboratory		
VEGF	Vascular endothelial cell growth factor		
β₂GPI	β ₂ glycoprotein I		

List Of Contents

	PAGE
LIST OF FIGURES	II
LIST OF TABLES	IV
LIST OF ABBREVIATIONS	IX
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
A. CHAPTER ONE:HEPATITIS C VIRUS	5
B. CHPATER TWO:HCV ASSOCIATED	
IMMUNE MANIFESTATIONS	27
C. CHAPTER THREE:EXTRAHEPATIC	
MANIFESTATIONS OF HCV INFECTION	53
D. CHAPTER FOUR:LIVER FIBROSIS IN HO	ev 63
E. CHAPTER FIVE: ANTIPHOSPHOLIPIDS	90
PATIENTS AND METHODS	110
RESULTS	127
DISCUSSION	149
SUMMARY AND CONCLUSION	163
RECOMMENDATIONS	168
REFERENCES	169
ARABIC SUMMARY	-

List of Tables

<u>Table</u>	<u>content</u>	page
Table 1	knodell score.	<u>76,77</u>
Table 2	Causes of cirrhosis.	<u>84</u>
Table 3	Child – Pugh Classification.	<u>87</u>
Table 4	Interpretation of results of antiphospholipid antibody.	<u>119</u>
Table 5	Comparison between Patient group (I) and Control group (II) as regard the age.	<u>131</u>
<u>Table 6</u>	Comparison between Patient group (I) and Control group (II) as regard the gender.	<u>132</u>
<u>Table7</u>	Comparison between Patient group(I)&Control group(II) as regards the mean level of ACL IgG.	<u>132</u>
Table 8	Comparison between Patient group (I) and Control group(II) as regards the mean level of ACL IgM.	<u>133</u>
<u>Table 9</u>	Comparison between Patient group (I) and Control group (II)as regards the mean level of APL IgG.	<u>134</u>
<u>Table 10</u>	Comparison between Patient group(I) and Control group(II) as regards the mean level of APL IgM.	<u>135</u>