()

/

/

- /

- /

_

Study of Predictive Value of Pediatric Risk of Mortality (PRISM) Score in Children with End Stage Liver Disease

THESIS Submitted For Fulfillment of Master's Degree IN PEDIATRICS BY

Noha Adel Amin. (M.B., B.Ch.) UNDER SUPERVISION OF

Prof. Dr. Mortada Hasan El-Shabrawi

Professor of Pediatrics Faculty of Medicine Cairo University

Prof. Dr. Nabil Abd El-Aziz Mohsen

Professor of Pediatrics Faculty of Medicine Cairo University

Prof. Dr. Hanaa Mostafa El-Karaksy

Professor of Pediatrics Faculty of Medicine Cairo University

Faculty of Medicine Cairo University

ABSTRACT

Introduction: The Pediatric Risk of Mortality (PRISM) score is a physiology based scoring system used to quantify risk of mortality in pediatric intensive care unit (PICU) populations.

The aim of this study: was to evaluate the use of the PRISM score to predict the outcome of patients with end stage liver disease (ESLD) and fulminant hepatic failure (FHF).

Patients and methods: This present study included 30 patients with ESLD and FHF, whose ages ranged from 2 to 108 months, who were admitted to the Emergency room (ER) and the Hepatology department of Cairo University Pediatric Hospital (tertiary referral hospital) during the period from May to November 2008. Surviving patients were followed up for 6 months till May 2009.

Results: Deceased patients compared with survivors were significantly younger (median age 7 vs 24 months). The median PRISM Score was 10. Deceased patients showed higher PRISM Score than survivors (15 vs 9). The GCS (p = 0.002) and the systolic blood pressure (p = 0.001) showed high statistical difference between survivors and deceased patients. The diastolic blood pressure (p = 0.015), respiratory rate (p = 0.033), PCO2 (p = 0.018) and the pupillary response (p = 0.052) were statistically different between them. Other laboratory tests including tests of liver function such as serum bilirubin (p = 1.00), PT and PTT (p = 0.961) did not show any statistical significance.

The PRISM score was not significantly different within the different ESLD and FHF etiologies (p = 0.385). Neither the PELD score (p = 0.2), nor the Child-Pugh score (p = 0.4) was associated with mortality

Conclusion: The PRISM score is a good means of severity assessment & mortality prediction in pediatric ESLD and FHF patients, with a cut-off point of 9.5, 70.6% sensitivity and 61% specificity. A death probability higher than 5.95 had a 70.6 % sensitivity and 85% specificity.

Keywords: End stage liver disease, fulminant hepatic failure, PRISM score, pediatric intensive care units.

ACKNOWLEDGMENT

I thank God for making this work possible and for giving me the opportunity to work under the supervision and guidance of:

Professor Dr. Mortada Hasan El-Shabrawi, Professor of Pediatrics, Cairo University, for whom I owe his masterful teaching, continuous support and correction, and for whom I express my utmost gratitude.

Professor Dr. Nabil Abd El-Aziz Mohsen, Professor of Pediatrics, Cairo University, to whom I would like to express my optimum gratitude for his valuable guidance, help, advice, constructive criticism and supervision.

Professor Dr. Hanaa Mostafa El-Karaksy, Professor of Pediatrics, Cairo University, to whom I will be extremely grateful forever for her constant valuable teaching guidance on every level, kind supervision and help.

Lastly I feel deeply thankful to all those who helped me directly or indirectly during the preparation of this thesis.

Finally, I would like to thank my family for their patience during writing of this thesis.

LIST OF ABBREVIATIONS

AIH Autoimmune Hepatitis

AJCC American Joint Committee on Cancer

ALF Acute Liver Failure

ALT Alanine Aminotrasferase

AMA Antimiochondrial Antibodies

ANA Antinuclear Antibodies

Anti-LKM Anti Liver- Kidney Microsomal antibodies

ASMA Anti smooth muscle Antibodies

AST Aspartate Aminotrasferase

CMV Cytomegalovirus

CPAP Continuous positive airway pressure

CPR Cardiopulmonary resuscitation

CTP Child-Turcotte-Pugh

CVP Central venous pressure

DKA Diabetic ketoacidosis

EBV Epstein Barr virus

ECG Electrocardiogram

EDTA Ethylene diamine tetra acetic acid

EEG Electroencephalogram

EHBA Extra hepatic biliary atresia

ER Emergency Room

ESLD End Stage Liver Disease

FFP Fresh Frozen Plasma

FHF Fulminant Hepatic Failure

FIO2 Fractional inspired oxygen

GCS Glasgow Coma Scale

GGT Gamma Glutamyl Transpeptidase

GI Gastro-Intestinal

HAV Hepatitis A virus

HBsAg Hepatitis B surface Antigen

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HDV Hepatitis D virus

HE Hepatic Encephalopathy

HIV Human Immunodeficiency virus

HRS Hepato renal syndrome

HSV Herpes Simplex virus

ICP Intracranial pressure

ICU Intensive Care Unit

INR International Normalized Ratio

LOS Length of stay

LT Liver Transplantation

MEGX Monoethyl-glycine xylidide

MRI Magnetic Resonance Imaging

NICU Neonatal Intensive Care Unit

NIs Nosocomial Infections

OLT Orthotropic Liver Transplantation

PaCO₂ Partial pressure of Carbon dioxide in arterial blood

PALF Pediatric Acute Liver Failure

Pao₂ Partial pressure of Oxygen in arterial blood

PCWP Pulmonary Capillary Wedge Pressure

PDR Predicted death rate

PELD Pediatric End-Stage Liver Disease

PICU Pediatric Intensive Care Unit

PIM Pediatric Index of Mortality

PRISM Pediatric Risk of Mortality

PSI Physiological Stability Index

PT Prothrombin Time

PTLD Post transplantation Lymphoproliferative disease

PTT Partial Thromboplastin Time

ROC Reciever operating characteristic

RRR Rounded Regular Reactive

SBP Spontaneous bacterial peritonitis

SSU Short Stay Unit

TGF-beta1 Transforming growth factor beta1

TIBC Total iron binding capacity

TIPS Transjugular intrahepatic portosystemic shunt

TISS Therapeutic Intervention Scoring System

CONTENTS

	page
INTRODUCTION AND AIM OF WORK	1
REVIEW OF LITERATURE:	
SEVERITY SCORES IN PICUs	3
THE PRISM SCORE	16
THE PRISM SCORE IN PATIENTS WITH HEPATIC DISEASES	30
FULMINANT HEPATIC FAILURE	32
END STAGE LIVER DISEASE	52
LIVER TRANSPLANTATION	70
PATIENTS AND METHODS	77
RESULTS	87
DISCUSSION	106
RECOMMENDATIONS AND CONCLUSION	114
SUMMARY	115
APPENDIX	117
REFERENCES	120
ARABIC SUMMARY	136

LIST OF FIGURES

Figure no.	Title	page
I	Improvement in survival over the past two decades in patients with ALF evaluated at King's College Hospital, London, according to the cause of liver failure	51
II	Interorgan ammonia trafficking and metabolism	58
III	Suggested management of acute variceal hemorrhage	63
IV	The PRISM Score on the soft ware	83
V	The GCS on the soft ware	83
VI	The PELD score on the soft ware	85
VII	Z score on the soft ware	84
VIII	The Child-Pugh score on the soft ware	86
1	Comparison of the age in relation to the outcome	88
2	Comparison of the PRISM score in relation to the outcome	92
3	ROC curve for PRISM, PDR and PELD	98
4	Comparison of PELD score in relation to the outcome	100
5	Correlations between PELD and child-Pugh scores	101
6	Correlations between PRISM and PELD scores	102
7	Correlations between PRISM and child-Pugh scores	103
8	Survival of the population	104

LIST OF TABLES

Table no.	Title	Page
I	The Therapeutic Intervention Scoring System	7
II	The Physiological Stability Index	10
III	The Pediatric Index of Mortality score	13
IV	The Child-Pugh score	15
V	The Pediatric Risk of Mortality score	18
VI	The Pediatric Risk of Mortality III score	25
VII	Causes of FHF in children	33
VIII	Spectrum of liver damage related to the etiology of FHF	39
IX	Clinical stages of HE	42
X	Diseases resulting in cirrhosis	52
XI	Important differential urinary findings in acute azotemia in patients with liver disease	56
XII	Stages of encephalopathy	59
XIII	Diagnostic tests in chronic liver disease and cirrhosis	68
XIV	The Glasgow Coma Scale	79
XV	The verbal response criteria for children under 5 years	79
1	Comparison of age between survivors and deceased patients	87
2	Comparison of sex between survivors and deceased patients	88
3	Comparison of outcome between ESLD and FHF	89
4	Comparison of outcome between cholestatic and non-	90
	cholestatic patients with ESLD	
5	Comparison of outcome between cholestatic patients	90
6	Comparison of outcome between EHBA patients with or	91

	without Kasai portoenterostomy	
7	Comparison of PRISM score between survivors and deceased patients	91
8	Comparison of PRISM score between patients below and	92
	above 1 year of age	
9	Comparison of PRISM score between ESLD and FHF	93
10	Comparison of PRISM score based parameters and PDR	93
	between survivors and deceased patients	
11	Comparison of PDR between ESLD and FHF	96
12	Sensitivity and specificity of PRISM, PDR and PELD	97
13	Comparison of PELD score between survivors and deceased	99
14	The follow up of the patients	105
15	Collective data of the patients	117

RECOMMENDATIONS

- 1) Mortaliy risk scoring systems are integral part of PICUs care.
- 2) Patients with ESLD and FHF should have the priority on the waiting list for LT according to their severity of illness.
- 3) The PRISM score may be repeated during admission to show the progress in the patient's condition whether it is deteriorating or regressing and also before discharge.
- 4) More wide application of the PRISM score in a larger group of patients; as our study included only 30 patients, also separation of patients with ESLD from patients with FHF may add new findings.
- 5) Application of other numeric scores in patients with ESLD and FHF to assess their discriminative power in mortality prediction and choose the most ideal one with more stress on scores including different ranges for variables that are closely related to impairment of liver functions such as bilirubin level which is an important prognostic indicator in patients with chronic liver disease, albumin level which indicates chronicity of liver illness, coagulation time, etc.
- 6) Physicians should not be guided only by scoring systems.
- 7) Numeric scoring systems should be always updated and validated for use. A PRISM score with ranges of variables based on data collected from Egyptian PICUs is recommended.

INTRODUCTION AND AIM OF THE WORK

Introduction

End-stage liver disease (ESLD) in children presents a challenging array of medical and psychosocial problems for the health care delivery team. Many of these problems are similar to those encountered by caregivers of adults with ESLD, such as the development of complications of cirrhosis, including ascites, spontaneous bacterial peritonitis (SBP), and esophageal variceal hemorrhage. However, the natural history of disease progression in children and their responses to medical therapy can differ significantly from that of their adult counterparts (**Leonis and Balistreri**, **2008**).

A primary obstacle to early diagnosis and treatment of ESLD is the lack of a well-validated, standardized assessment method (**Tarek** *et al.*, 2006).

The pediatric risk of mortality (PRISM) score was published in **1988a** by **Pollack** *et al.* and exhibited an excellent discriminatory and predictive performance. The PRISM score is a second-generation physiology-based predictor for pediatric intensive care unit (PICU) patients (Wells *et al.*, **1996**).

It is still the most widely known and used at the PICU and used in clinical trials as a standard prognostic score for evaluation of disease severity in pediatric patients (Gemke and Van, 2002). The PRISM score was developed from the Physiologic Stability Index (PSI) to reduce the number of physiologic variables required for PICU mortality risk assessment and to obtain an objective weighing of the remaining variables (Apostopoulou *et al.*, 2005).

The relationship between physiologic status and mortality risk may change as new treatment protocols, therapeutic interventions and monitoring strategies are introduced (Jacques and Jacques, 2005).

The use of PRISM score or other scoring systems in the PICU is of great importance for evaluating the efficacy and efficiency of a particular PICU. However, the PRISM score was developed and validated in the United States and subsequently validated in Europe, but has not been evaluated in a less affluent society (William et al., 2004).

The PRISM score was used for assessing the severity of pediatric fulminant hepatic failure (FHF) and had proved to be an accurate means of severity assessment (**Tissieres** *et al.*, 2003).

Aim of work

The aim of this work was to study the predictive value of the PRISM score in admitted patients with ESLD and FHF to the Emergency Room (ER) and the Pediatric Hepatology Unit at Cairo University Pediatric Hospital (tertiary referral hospital) during a period of 6 months. Survivors were followed up for another 6 months.

Review of literature

SEVERITY SCORES IN PICUs

Scoring systems to measure the severity of illness in patients in the intensive care unit (ICU) have evolved significantly over the past decade and are gaining widespread acceptance among health care providers and institutions (Markovitz, 1999).

Health care providers have long sought methods to objectively describe the severity of illness of patients and groups of patients. Many disease or organ-specific systems, eg, the Apgar score for newborns, the Glasgow Coma Scale (GCS) for headinjured patients, and the New York Heart Association Functional Classification for patients with heart disease, have gained widespread acceptance over time. New tools that may offer better predictive ability, identifying pertinent variables using the modern techniques of regression analysis, are being developed (Combes et al., 1996).

Severity scores were first developed for adult ICUs and subsequently, in 1988, the first specific pediatric score was published: the PRISM score (**Pollack** *et al.*, 1988a). Severity scoring systems currently available can be divided into four categories: injury scores, severity of illness (case mix adjustment), intervention scores, and workload scores. Severity of illness scores are abundant (**El-Nawawy**, 2003). In the PICU, the PRISM score is the most relevant and best known (**Russell**, 1999).

The first scoring system in PICU was the Therapeutic Intervention Scoring System (TISS). The basis of this system is that therapeutic intensity defines severity of illness. A score of one to four points is awarded to each of 70 nursing and medical procedure. However, the system does not take into account the variability in clinical practice which may occur between ICUs and between different countries. It is however a useful system for assessing expenditure and has been extensively used for this purpose (Bion, 1992).

The first physiology based scoring system to assess severity of acute illness in the total population of infants and children admitted to the pediatric ICU was PSI. It