CLINICAL AND RADIOGRAPHIC EVALUATION OF DENTAL IMPLANTS IN OSTEOPOROTIC PATIENTS

A thesis submitted to Oral Surgery Department, Faculty of Oral and Dental Medicine, Cairo University

For partial fulfillment of the requirements of the Master's Degree in Oral and Maxillofacial Surgery

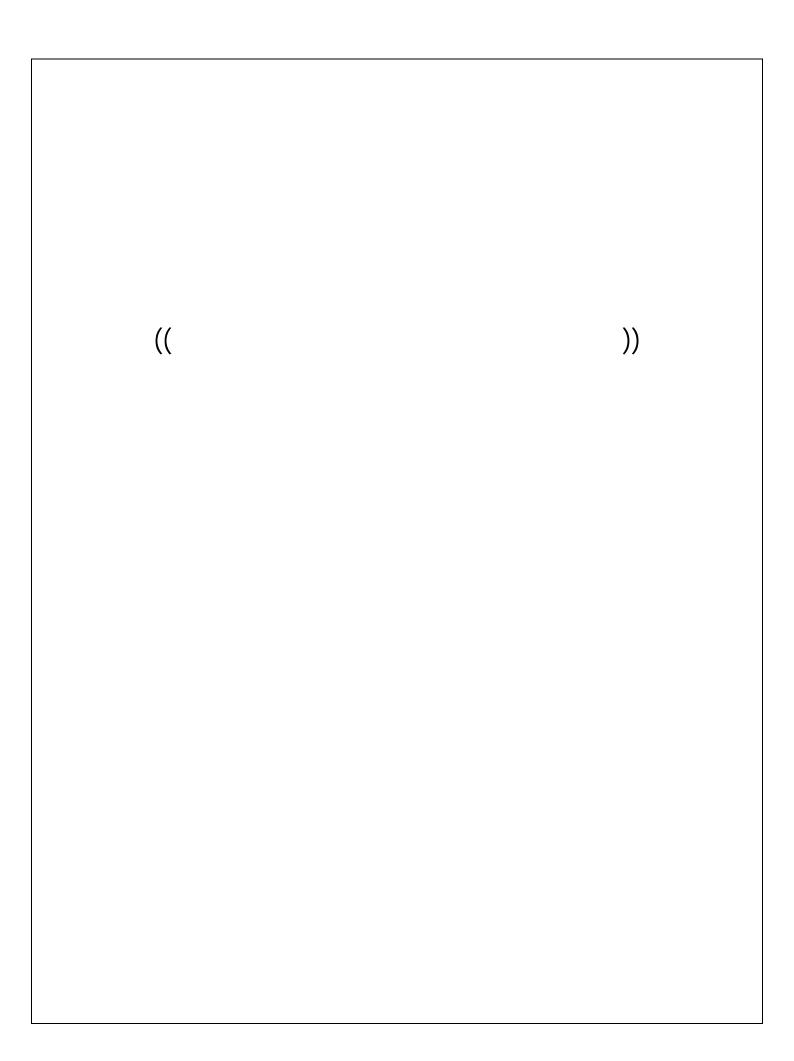
By
MAHMOUD MOHSEN EL ARINI

B.D.S. (2003) Cairo University

Faculty of Oral and Dental Medicine
Cairo University
2009

Supervisors

DR. Hatem Abd El Rahman Mostafa


Professor of Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

DR. MushIra Abdel LatIf Dahaba

Professor of Oral Radiology
Faculty of Oral and Dental Medicine
Cairo University

DR. Gamal Mohamed Moutamed

Lecturer in Oral and Maxillofacial Surgery
Faculty of Oral and Dental Medicine
Cairo University

ACKNOWLEDGMENTS

First of all, I thank **Allah** for paving the way to fulfill this work.

I would like to express my sincere gratitude and appreciation to Dr. **Hatem Abd El Rahman**, Professor of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University. I will remain grateful to him for his great help and support, scientific supervision and kind guidance enabled me to finish this work correctly.

I am also grateful to Dr. Mushira Abd El Latif Dahaba, Professor of Oral Radiology, Faculty of Oral and Dental Medicine, Cairo University, for her unlimited effort and guidance throughout this work. She did not save any effort and valuable time in teaching, advising and encouraging me.

I would like to express my sincere thanks to Dr. **Gamal Mohamed Moutamed**, Lecturer of Oral and Maxillofacial Surgery, Faculty of Oral and Dental Medicine, Cairo University, for his kind support, time, unlimited help and continuous effort to bring this work to its best.

Special thanks to Dr. Rokia El Bana, Researcher at National Research Center, Department of Biological Anthropology. For her effort throughout this work, she did not save any effort and time in understanding, advising and encouraging me.

Finally many thanks to the members of Oral Surgery Department, Faculty of Oral and Dental Medicine, Cairo University, for kind cooperation during this work.

CONTENTS

	Page
LIST OF FIGURES	I
LIST OF TABLES	II
LIST OF ABBREVIATIONS	III
INTRODUCTION	1
REVIEW OF LITERATURE	2
AIM OF THE STUDY	32
MATERIALS AND METHODS	33
RESULTS	65
DISCUSSION	90
SUMMARY AND CONCLUSION	99
REFERENCES	103
ARABIC SUMMARY	,

(I) LIST OF FIGURES

Fig. No		Page
Fig. (1)	Titanium mucosal insert	4
Fig. (2)	Blade implant	5
Fig. (3)	Transosteal staples	6
Fig. (4)	Endosteal root form implant	8
Fig. (5)	Distraction implant	9
Fig. (6)	Bone types	18
Fig. (7)	Scanning electron microscopic image of normal bone and osteoporotic bone	24
Fig. (8)	Central DEXA device	37
Fig. (9)	Central DEXA device software	37
Fig. (10)	DEXA report	38
Fig. (11)	Diagrammatic Ridge-mapping measurements	39
Fig. (12)	Direct recording of ridge mapping measurements using a bone caliber	40
Fig. (13)	Preoperative panoramic radiograph	42
Fig. (14)	Surgical stent used for drill guidance	43
Fig. (15)	Surgical set of instruments for flap reflection	45
Fig. (16)	The reflected flap	45
Fig. (17)	The used surgical drills having laser markers for length recognition	46
Fig. (18)	Surgical implant motor	47
Fig. (19)	The sequence of standard drills	47
Fig. (20)	Surgical drilling of bone for preparation of implant site	48

Fig. (21)	Paralleling pins	49
Fig. (22)	Implant vial components	51
Fig. (23)	Implant inserting	52
Fig. (24)	Another implant insertion	52
Fig. (25)	Implant directed into final position using ratchet	53
Fig. (26)	Implants after final setting	53
Fig. (27)	Flap after closure	54
Fig. (28)	Assembled parts of the Rinn XCP instrument	60
Fig. (29)	Digora software for Windows	62
Fig. (30)	Histogram presenting the mean BMD scores of the two groups	68
Fig. (31)	Bar charts presenting the mean bone density throughout the whole study period	69
Fig. (32)	Line chart presenting the changes by time in mean bone density of normal group	70
Fig. (33)	Line chart presenting the changes by time in mean bone density of osteoporotic group	72
Fig. (34)	Bar-charts presenting % changes in bone density for the two groups	74
Fig. (35)	Bar chart representing the frequency distribution of modified gingival index in the two groups throughout the study period	78
Fig. (36)	Bar chart representing the frequency distribution of implant mobility test scores in the two groups throughout the study period	80
Fig. (37)	Bar chart presenting mean PD of the two groups	81
Fig. (38)	Line chart presenting changes by time in mean PD of the two groups	83
Fig. (39)	Bar chart presenting mean percentage changes in PD of the two groups	84
Fig. (40)	Digora immediate post-operative-case number 3	89
Fig. (41)	Digora 3 months post-operative-case number 3	89
Fig. (42)	Digora 6 months post-operative -case number 3	89

(II) LIST OF TABLES

Tab. No		Page
Tab. (1)	Demographic information of the investigated cases	66
Tab. (2)	Results of Kolmogorov-Smirnov test of normality	67
Tab. (3)	Mean, standard deviation (SD) values and results of Student's t-test for comparison between BMD scores of the two groups	68
Tab. (4)	Mean, standard deviation (SD) values and results of Student's t-test for comparison between bone density of the two groups	69
Tab. (5)	Mean differences, standard deviation (SD) values and results of paired t-test for the changes by time within normal group	70
Tab. (6)	Mean differences, standard deviation (SD) values and results of paired t-test for the changes by time within osteoporotic group	71
Tab. (7)	Mean %, standard deviation (SD) values and results of Student's t-test for comparison between percentage changes in bone density of the two groups	73
Tab. (8)	Frequencies, percentages and results of chi-square test for comparison between the modified gingival index of the two groups	77
Tab. (9)	Frequencies, percentages and results of chi-square test for comparison between implant mobility test of the two groups	79
Tab. (10)	Mean, standard deviation (SD) values and results of Student's t-test for comparison between PD of the two groups	81
Tab. (11)	Mean differences, standard deviation (SD) values and results of paired t-test for the changes by time within each group	82
Tab. (12)	Mean %, standard deviation (SD) values and results of Student's t-test for comparison between percentage changes in PD of the two groups	83
Tab. (13)	Results of Pearson's and Spearman's correlation	85
	coefficients for the correlation between the bone density	
	and different variables	

Tab. (14)	Regression analysis results- model summary	86
Tab. (15)	Regression analysis results- model results	87

(III) LIST OF ABBREVIATIONS

CT	Computed Tomography
DDR	Direct Digital Radiography
CCD	Wired charged-coupled device
PSP	Wireless storage phosphor screen
IP	Imaging plate
BMD	Bone Mineral Density
DEXA/ DXA	Dual-Energy X-ray Absorptiometry
WHO	World Health Organization
SD	Standard Deviation
BMC	Bone Mineral Content
QCT	Quantitative Computed Tomography
m GI/ GI	The Modified Gingival Index
PD	Probing depth
CBD	Crestal Bone Density
UR	Upper Right
UL	Upper Left
НА	Hydroxyapatite

Introduction

During the last 10 years, implant dentistry utilizing root-form implants has become a strong and rapidly growing clinical science. What was formerly considered an experimental solution to tooth loss has now become a predictable restorative alternative.

Healthy bone with normal regenerative capacity is imperative for success in all phases of dentistry. Bone is dynamic, and can be affected by local or systemic conditions. Normal bone metabolism is essentially crucial for success in implant treatment, as aberrations in bone physiology are likely to compromise the prognosis for optimal osseointegration¹.

Osteoporosis is a systemic condition with the potential for affecting implant treatment. The disease is particularly alarming because of its high incidence in the expanding older population, which contains the greatest number of candidates for implant therapy. Osteoporosis in other skeletal sites seems to be associated with a decrease of bone mineral density in the jaw².

There is a suggestion that patients with osteoporosis may have decreased alveolar bone height and greater tooth loss when compared with a normal population³.

In addition, a majority of relevant studies suggest that postmenopausal osteoporosis may be important for the progression of bone loss in periodontitis⁴.

This may reduce bone quantity at implantation sites. And therefore a question arises concerning implants in osteoporotic patients. That's why this study was undertaken to throw light on the effect of osteoporosis on the success of dental implants.

Review of Literature

Dental Implants

The remarkable progress in implant dentistry over the past few decades helped to put the evidence into perspective. As recently as 1969, the successful anchorage of dental implants in dogs was still in the experimental stages⁵.

These experiments were performed under remarkably modern antiseptic conditions un-imaginable prior to 1950, They also relied on the development of titanium and other high-technology alloys and bonds of incredibly sophisticated composition. These materials are necessary to provide a surface that can "fool" the human tissues into accepting them. The goal of modern implant research is to secure to the bone a permanently anchored unit that can be used for prosthesis attachment, this can take place when osseointegration has been achieved⁶.

Only two decades ago, Brånemark's pioneering team presented the results of their long-term (10-year) studies of dental implants of all types and provided an important review of the literature⁷.

Two years later, in 1979, Schnitman and Shulman edited a landmark volume discussing the benefits and risks involved in attempts to use the most modern of dental implants available⁸.

The types of experimental materials that had been found to allow any success when used for implants multiplied after 1970, as had the special surfaces created for

these implants and the forms of the restorations⁹. The original titanium alloys that were successfully used were joined by implants using vitreous carbon, Vitallium, aluminum oxide, and various combinations coated with either carbon or titanium to enhance acceptance by the bone. These implant materials had paralleled incredible gain in bone joint replacement research. Despite considerable developmental success, by 1986 most researchers still had incomplete agreement regarding implant success⁶.

Types of Dental Implants

Dental implants can be classified in many ways. The classification presented in this research aims primarily simplicity and is based upon their anchorage component as it relates to the alveolar bone which provides support and stability.

Accordingly, Dental implants can be classified into:

Mucosal inserts

A mucosal insert is "a metal insert attached to the tissue surface of a removable prosthesis that mechanically engages undercuts in a surgically prepared mucosal site" ¹⁰.

Figure (1): Titanium mucosal insert

Blade implants

Linkow in 1963 designed a self tapping implant called "Vent implant", but soon realized its limitations of use in areas of inadequate bone. He then altered the design of implants to overcome this problem and introduced the blade type implant in 1967 which was made of commercially pure titanium, a material he adopted from the work of PI Branemark, almost a decade earlier¹², Linkow then designed a multitude of configurations of the blade implant to fit almost any area of the jaws and meantime configuring to the anatomy of that area avoiding vital structures. The blade vent implant proved to be a very successful and versatile implant and was the most widely used implant until the early 80's ¹³, especially in an era when it was theorized that fibro-osseointegration with its presumable resemblance to the periodontal ligament and shock absorbing characteristic was actually advantageous over bony-osseointegration. This theory was later proven to be pure myth¹⁴. A modification of Linkow's work was carried out by Roberts and Roberts in 1970 by introducing the ramus frame implant which engaged the bone by tripoding on the mental and ascending ramus areas¹⁵.

Figure (2): Blade implant