

IMPLEMENTATION OF VARIABLE FREQUENCY TRANSFORMERS TO STABILIZE ELECTRIC POWER SYSTEMS

By

Eng. Islam Saad El-Sayyed Emam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

IMPLEMENTATION OF VARIABLE FREQUENCY TRANSFORMERS TO STABILIZE ELECTRIC POWER SYSTEMS

By

Eng. Islam Saad El-Sayyed Emam

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Khairy Farahat Ali Helwa

Professor of Electrical Machines
Electrical Power and Machines Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

IMPLEMENTATION OF VARIABLE FREQUENCY TRANSFORMERS TO STABILIZE ELECTRIC POWER SYSTEMS

By

Eng. Islam Saad El-Sayyed Emam

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the			
Examining Committee			
Prof. Dr. Khairy Farahat Ali Helwa, Thesis Main Advisor			
Prof. Dr. Mahmoud Mohamed Abd-Alhakiem, Internal Examine			
1101. D1. Wallinoud Wollamed Abd-Alliakielli, Internat Examine			
Prof. Dr. Rizk Mohamed El-Saved Hamouda. External Examiner			

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Professor of Electrical Machines, Faculty of Engineering, Ain Shams University.

2015

Engineer's Name: Islam Saad El-Sayyed Emam

Date of Birth : 29 / 08 / 1987 **Nationality** : Egyptian

E-mail : Eng_ise@yahoo.com **Phone** : (+2) 0100 345 1323

Address : Kafer El-Hema, Ashmoun, Menoufia

Registration Date: 01 / 10 / 2010
Awarding Date: / / 2015
Degree: Master of Science

Department: Electric Power and Machines Engineering

Supervisor:

Prof. Dr. Khairy Farahat Ali Helwa

Examiners:

Prof. Dr. Rizk Mohamed El-Sayed Hamouda, (External Examiner)

Prof. Dr. Mahmoud Mohamed Abd-Alhakiem, (Internal Examiner)

Prof. Dr. Khairy Farahat Ali Helwa, (Thesis Main Advisor)

Title of Thesis:

Implementation of Variable Frequency Transformers to Stabilize Electric Power Systems.

Key Words:

Variable Frequency Transformer (VFT); Wound Rotor Induction Machine (WRIM); Asynchronous Network Interconnections; Power Flow; Synchronization; Wind Energy Farm

Summary:

This thesis presents new technique for controlling power flow to stabilize power systems including wind energy farms. Variable Frequency Transformer (VFT) consider one of the important and new applications of slip ring induction machine. This technique can be implemented to stabilize unique and different frequencies electric power systems. Also, it can be applied with wind energy farms to improve its characteristics and performances.

ACKNOWLEDGEMENTS

All praises and thanks to Allah for guiding me to complete this dissertation by providing me with very valuable persons to support me during my work.

I thank Allah and my supervisor Prof. Dr. Khairy Farahat Ali Helwa for his support and guidance throughout my thesis.

Special thanks for my wife (Marwa Mahmoud Nofal) for her supporting through all stages over studying and writing this thesis.

Finally, my thanks to my family especially my father (Saad El-Sayyed Khalil) and my mother (Somia Ibrahim Seiam) for their encouragement, supporting, and patience at all the time in order to complete my dissertation in its best form.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	I
TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	VIII
LIST OF SYMBOLS AND ABBREVIATIONS	IX
ABSTRACT	X
CHAPTER 1: INTRODUCTION	1
1.1 Power flow concept	1
1.2 Transferring power between asynchronous systems.	2
1.3 VFT History	3
1.4 General overview	4
1.5 Objectives	5
1.6 Original contributions	5
1.7 Thesis architecture	6
CHAPTER 2: CONCEPT AND STEADY STATE OPERATION OF VARI FREQUENCY TRANSFORMER	
2.1 Introduction	
2.2 VFT concept	
2.3 VFT theory of operation	
2.4 Summary	
CHAPTER 3: DYNAMIC MATHEMATICAL MODEL OF VARIABLE FREQUENCY TRANSFORMER	
3.1 Introduction	21
3.2 Mathematical model	21
3.2.1 Wound rotor induction machine mathematical model	21
3.2.2 DC machine mathematical model	22
3.2.3 Integration WRIM and DC machine mathematical models	23
3.3 Generate new block in MATLAB/SIMULINK	
3.4 Summary	30
CHAPTER 4: TRANSIENT PERFORMANCE OF VARIABLE FREQUENTRANSFORMER CONNECTING TWO ASYNCHRONOUS GRIDS	
4.1 Introduction	31
4.3 System parameters	33
4.4 System configuration	33
4.5 System operation	34
4.6 System control	35
4.7 System analysis	38

4.7	7.1 Normal operating conditions	38
4.7	7.2 Frequency disturbance in the weak system	44
4.7	7.3 Power angle disturbance in the weak system	47
4.7	7.4 Voltage dip in the weak system.	48
4.7	7.5 VFT response with earth and line faults disturbances.	51
4.8 S	ummary	68
	TER 5: VARIABLE FREQUENCY TRANSFORMER AS A GRID TIE	
5.1	Introduction	
5.2	General	69
5.3	System analysis	
5.4	Change direction of the power flow.	
5.5	VFT characteristic during speed variation from zero till 300 rpm	
5.5	7 7	
5.5		=.
	que.	
5.6	Summary	76
	TER 6: USE OF VARIABLE FREQUENCY TRANSFORMER TO ILIZE GRID CONNECTED DOUBLY FED WIND DRIVEN INDUCT!	ſΩN
	RATOR	
6.1	Introduction	77
6.2	System description	77
6.3	The Proposed model (DFIG directly connected to power grid)	80
	3.1 Normal operating condition (constant wind speed and connected to infinite bus between the control of the co	,
	3.2 Change in the wind speed.	
6.3	3.3 Applying a voltage dip on the power grid source.	86
6.3	3.4 Change in the power grid source frequency.	88
6.3	3.5 Change in the power grid source angle	90
6.4	Summary	91
СНАР	TER 7: CONCLUSION AND RECOMMENDATIONS	92
7.1 C	onclusions	92
7.2 F	uture works	92
REFE	RENCES:	94
APPE	NDIX A	96
APPE	NDIX B	97
Caga	Study:	98

LIST OF FIGURES

Figure (1-1): Electrical power circuit	
Figure (1-2): Voltage phasor diagram	
Figure (1-3): Langlois Variable Frequency Transformer	4
	_
Figure (2-1): VFT Component	
Figure (2- 2): Per phase equivalent circuit of WRIM	8
Figure (2-3): Per phase equivalent circuit for WRIM referred to stator windings	
Figure (2-4): Approximate phasor diagram	
Figure (2-5): Machine torque versus power angle δ	
Figure (2- 6): VFT internal components	
Figure (2-7): VFT phasor diagram	14
Figure (2-8): Electrical angular angle between stator and rotor winding	14
Figure (2-9): Power flow through two asynchronous systems from stator to rotor	15
Figure (2- 10): Power flow from stator to rotor	15
Figure (2-11): Power flow through two asynchronous systems from rotor to stator	16
Figure (2-12): Power flow from rotor to stator	16
Figure (3-1): VFT mathematical model diagram	23
Figure (3-2): VFT mathematical model in Matlab Simulink	24
Figure (3- 3): VFT speed	
Figure (3-4): VFT torque	25
Figure (3-5): VFT stator and rotor active power	26
Figure (3-6): VFT stator and rotor reactive power	
Figure (3-7): Phase (A) stator current (for only first 3 sec)	
Figure (3-8): Phase (A) rotor current (for only first 3 sec)	
Figure (3-9): Proposed block front view	
Figure (3-10): Proposed function block parameters	
Figure (3-11): Proposed internal VFT block	
Figure (3-12): VFT model mask (data input tool)	
rigure (5- 12). Vr i moder mask (data input tool)	50
Figure (4-1): VFT model in Matlab Simulink	32
Figure (4-2): VFT operation procedures flow chart	
Figure (4-3): DC machine controller	
Figure (4-4): Generating reference speed controller	
Figure (4- 5): Generating reference angle for dc machine controller	
Figure (4-6): Reference torque, DC machine coupling torque and WRIM developed	57
torquetorque torque, DC macmine coupinig torque and WKIW developed	38
Figure (4-7): VFT stator and rotor active power	
Figure (4- 8): VFT speed	
Figure (4- 8): VFT rotor copper losses	
Figure (4- 9): VFT stator and rotor reactive power	
Figure (4- 10): VF1 stator and rotor reactive power	
Figure (4-12): VFT stator current	
Figure (4-13): VFT rotor current	
Figure (4-14): Power flow diagram	41
Figure (4-15): VFT Oscillations in speed at the moment of transferring power (J=30	4.3
kg.m2)	42

Figure (4-16): VFT oscillations in stator and rotor power (J=30 kg.m2)	42
Figure (4-17): VFT oscillations in speed at the moment of transferring power (J=63	
kg.m2)	
Figure (4-18): VFT oscillations in stator and rotor power (J=63 kg.m2)	43
Figure (4-19): VFT oscillations in speed at the moment of transferring power (J=90	
kg.m2)	
Figure (4-20): VFT oscillations in stator and rotor power (J=90 kg.m2)	44
Figure (4-21): Reference angular frequency (Rad/Sec)	44
Figure (4- 22): Network 1 frequency (Hz)	45
Figure (4-23): Network 2 frequency (Hz)	45
Figure (4-24): VFT speed with frequency disturbance from 60 Hz to 59 Hz	45
Figure (4-25): VFT stator and rotor active power with frequency disturbance	46
Figure (4-26): VFT stator and rotor reactive power with frequency disturbance	46
Figure (4- 27): DC voltage of DC machine	46
Figure (4-28): VFT speed with power angle disturbance from 0 Deg to 5 Deg	47
Figure (4-29): VFT stator and rotor active power with power angle disturbance	48
Figure (4-30): VFT stator and rotor reactive power with power angle disturbance	48
Figure (4-31): DC voltage of dc machine	48
Figure (4- 32): VFT speed with voltage dip	49
Figure (4- 33): VFT stator and rotor active power	49
Figure (4- 34): VFT stator and rotor reactive power	49
Figure (4- 35): VFT stator voltage	
Figure (4- 36): VFT rotor voltage	50
Figure (4- 37): VFT stator current	50
Figure (4- 38): VFT rotor current	51
Figure (4- 39): VFT stator cupper losses (W)	51
Figure (4- 40): VFT rotor cupper losses (W)	51
Figure (4- 41): VFT schematic drawing	
Figure (4- 42): Proposed model for short circuit evaluation	53
Figure (4-43): VFT active power flow with SLG fault at 10 sec	
Figure (4- 44): Fault current at phase A	
Figure (4- 45): Phase (A) voltage	
Figure (4- 46): Three phase current at Bus (B1)	
Figure (4- 47): Three phase current at Bus (B2)	
Figure (4-48): Three phase current at Bus (B3)	
Figure (4- 49): VFT speed	
Figure (4- 50): Stator cupper losses	
Figure (4- 51): Rotor cupper losses	
Figure (4- 52): VFT active power flow	
Figure (4-53): Typical phase (A) and (B) fault current	
Figure (4-54): Phase (A) voltage	
Figure (4- 55): Three phase current at Bus (B1)	
Figure (4- 56): Three phase current at Bus (B2)	
Figure (4-57): Three phase current at Bus (B3)	
Figure (4-58): VFT speed	
Figure (4- 59): Stator cupper losses	
Figure (4- 60): Rotor cupper losses	
Figure (4- 61): VFT active power flow	
Figure (4- 62): Phase (A) fault current	
Figure (4- 63): Phase (B) fault current	
Figure (4- 64): Phase (A) voltage	
Figure (4- 65): Three phase current at Bus (B1)	
• • • •	01
V	

Figure (4- 66): Three phase current at Bus (B2)	61
Figure (4- 67): Three phase current at Bus (B3)	62
Figure (4- 68): VFT speed	
Figure (4- 69): Stator cupper losses	62
Figure (4- 70): Rotor cupper losses	
Figure (4-71): VFT active power flow	63
Figure (4-72): Typical fault current (A, B & C)	63
Figure (4- 73): Phase voltage	
Figure (4-74): Three phase current at Bus (B1)	
Figure (4-75): Three phase current at Bus (B2)	64
Figure (4-76): Three phase current at Bus (B3)	65
Figure (4- 77): VFT speed	
Figure (4- 78): Stator cupper losses	65
Figure (4- 79): Rotor cupper losses	66
Figure (4-80): VFT active power flow	
Figure (4- 81): Three phase current at Bus (B1)	
Figure (4- 82): Three phase current at Bus (B2)	67
Figure (4-83): Three phase current at Bus (B3)	67
Figure (4- 84): VFT speed	67
Figure (4-85): DC machine, VFT & reference torques	68
Figure (5- 1): VFT speed	69
Figure (5-2): DC machine, VFT, and reference torques	
Figure (5-3): Angle of system 2 voltage and rotor voltage of WRIM	
Figure (5-4): VFT stator and rotor active power	
Figure (5-5): VFT stator and rotor reactive power	
Figure (5- 6): DC input power	71
Figure (5-7): VFT stator cupper losses	71
Figure (5-8): VFT rotor cupper losses	
Figure (5-9): VFT stator and rotor power flow	73
Figure (5- 10): VFT reactive power flow	
Figure (5-11): DC machine, VFT, and reference torques	
Figure (5- 12): Stator cupper losses	
Figure (5- 13): Rotor cupper losses	74
Figure (5-14): Active power flow diagram with VFT speed variation	75
Figure (5-15): VFT power flow with torque	
Figure (5-16): Reactive power flow diagram with VFT speed variation	76
Figure (6-1): Conceptual drawing for DFIG with VFT controller	77
Figure (6-2): Proposed model for DFIG directly connected to power grid	
Figure (6-3): Wind speed with time	
Figure (6-4): DFIG generating torque with time	
Figure (6-5): DFIG generating speed with time	81
Figure (6- 6): VFT speed with time	
Figure (6-7): VFT torque with time	
Figure (6-8): DFIG active power flow	82
Figure (6-9): DFIG stator three phase voltages	82
Figure (6- 10): DFIG rotor three phase voltages	83
Figure (6-11): DFIG stator three phase current	83
Figure (6- 12): DFIG rotor three phase current	83
Figure (6- 13): DFIG wind speed	84

Figure (6- 14): DFIG torque	84
Figure (6- 15): DFIG generating speed with time	84
Figure (6- 16): VFT speed with time	85
Figure (6- 17): VFT torque with time	85
Figure (6- 18): DFIG active power flow	85
Figure (6- 19): DFIG generating torque with time	86
Figure (6-20): DFIG generating speed with time	86
Figure (6- 21): VFT speed with time	86
Figure (6- 22): VFT torque with time	87
Figure (6- 23): DFIG active power flow	87
Figure (6- 24): Power grid voltage dip	87
Figure (6-25): DFIG generating torque with time	88
Figure (6- 26): DFIG generating speed with time	88
Figure (6- 27): VFT speed with time	88
Figure (6- 28): VFT torque with time	89
Figure (6- 29): DFIG active power flow	89
Figure (6-30): DFIG turbine input torque (pu)	89
Figure (6-31): DFIG turbine input torque (N.m)	90
Figure (6- 32): DFIG generating torque with time	90
Figure (6- 33): DFIG generating speed with time	90
Figure (6- 34): VFT speed with time	
Figure (6- 35): VFT torque with time	91
Figure (6-36): DFIG active power flow	91

LIST OF TABLES

Table (3-1): $\theta \& \beta \lor$	Values with reference frames.	22
-------------------------------------	-------------------------------	----

LIST OF SYMBOLS AND ABBREVIATIONS

VFT Variable Frequency Transformer WRIM Wound Rotor Induction Machine HVDC High Voltage Direct Current

d-q Direct-Quadrature RPM Repulsion Per Minute

Hz Hertz W Watt

VAR Voltage Ampere Reactive

RMS Root Mean Square

pu Per Unit Deg. Degree

DFIG Doubly Fed Induction Generator

EHV Extra High Voltage
H.V High Voltage
IPB Isolated Phase Bus
SLG Single Line to Ground
AC Alternating Current

DFIM Doubly Fed Induction Machine

GE General Electric

SRIM Slip Ring Induction Machine AEP American Electric Power

CFE Comisión Federal de Electricidad ERCOT Electric Reliability Council of Texas

ABSTRACT

The Variable Frequency Transformer "VFT" provides bidirectional power flow for High Voltage (H.V) transmission systems. The VFT can transfer power between asynchronous networks. Basically, it is a rotating transformer whose torque can be adjusted to control in the power flow. This technique has many of advantages over the conventional technique of HVDC link. It depends mainly on a rotating machine which has many advantages over another method as its controllability, operating flexibility, compact design and its stability.

The proposed application technique provides VFT theory of operation, construction, and component and built VFT model (Built In) based on MATLAB- SIMULINK and SIM Power System toolbox for studying its performance characteristic, operation and control technique.

Also, the proposed technique provides VFT response for any changing in power system parameters (frequency, loss of main H.V." High Voltage" line and line and earth faults).

This technique shows that VFT can be implemented between networks to isolate them. This isolation extended from frequency disturbance till phase line and earth faults. Also, VFT can be applied to connect two asynchronous networks like Egypt network with 50 Hz and Kingdom of Saudi Arabia network 60 Hz.

Built mathematical model based on MATLAB/SIMULINK and SIM Power System toolbox for whole system for studying VFT dynamic response during starting and power flow transferring. Results show that VFT has excellent dynamic response during power system disturbances. Results of VFT shows that it damps any disturbance at any connected network due to its internal impedance and its rotating inertia.

The proposed model integrated with Doubly Fed Induction Generator to provide new technique for controlling power flow through wind turbine. It studies some of disturbance that can be occurred in power systems and wind turbine. Due to limitations of electronic circuit –Rectifier and Inverter- that integrated to the rotor circuit of Wound Rotor Induction Machine, this new technique provided to overcome all these limitations.

VFT is considered as a new important tool that can be used to stabilize electric power system and control power flow. This tool does not less than the conventional transformers and generators inventions.

Thesis will start from basics of power flow step by step and accumulate information till draw the full picture for VFT and its characteristics. Results and figures will be integrated internal each chapter to try to draw each chapter structure and architecture.

CHAPTER 1: INTRODUCTION

Due to the extra growing in generation of electricity in the last years, the need for stable and economic interconnections between asynchronous networks becomes high. These interconnections between synchronous or asynchronous network were provided to reduce the cost of electricity and to improve power system reliability and stability.

Two types of interconnections between networks can be classified as the following:

<u>First type</u> is to connect two synchronous networks with Alternating Current (AC) transmission lines. This type is simple and economic, but it increases the networks complexity and decreases the stability of the two networks under serious faults. So, the AC interconnections are replaced by HVDC interconnections. HVDC has the capability to connect synchronous and asynchronous networks.

Second type of interconnections is to connect two asynchronous networks by HVDC link or by a new technology known as VFT. HVDC link and VFT technology provide these interconnections. Each method has its benefits and advantages, also has its berries and limitations. Power system, protection system and machine system become nowadays very sensitive. Each system has its effect on the other systems. It is become necessary to provide a research at any system and study its effect on the other systems. The three systems are collected to provide new technology named by Variable Frequency Transformer. Each system has its touch on this equipment. Rotary transformer (Wound Rotor Induction Machine) and DC drive system is the core technology for VFT. Interconnection between asynchronous networks using VFT technology shall be studied by power system and protection systems. These studies provide stability, load flow and short circuit evaluations for VFT.

1.1 Power flow concept

Power flow in the grid from system to another system depends up on the differences between voltage angles of the two systems as the active and reactive power flow law are [1]:

At V₂ terminals

Where:

- V_1 is the magnitude voltage for system 1.
- V_2 is the magnitude voltage for system 2.
- P is the power flow magnitude from V_1 to V_2 .
- Q is the reactive power flow magnitude from V_1 to V_2 .
- δ is the angle difference between V_1 and V_2 .
- X_{12} is the total reactance between system 1 and system 2. The power circuit and phasor voltage are shown in figs. (1-1) and (1-2). By assuming V_1 , V_2 and X_{12} are constants, the power flow can be fully controlled by controlling in the angle between the two voltage systems. By the same concept, if the angle of voltage system 1 (V_1) is constant –Infinite Bus (Constant Voltage & Constant Frequency), the power flow can be controlled