Neutrophil CD64 as an Early Diagnostic Marker in Neonatal Sepsis Protocol of Thesis

Submitted for Partial Fulfillment of Master Degree
In Clinical and Chemical Pathology

By Heba Ezzat Hashem Osman

MB BCh
Faculty of Medicine - Ain Sham University

Supervised by Professor /Amira Mohammed Mokhtar

Professor of Clinical and Chemical Pathology Faculty of Medicine -Ain Shams University

Doctor / Shereen Ahmed El Masry

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine -Ain Shams University

Faculty of Medicine
Ain Shams University
2014

سورة البقرة الآية: ٣٢

First and Foremost thanks to "ALLAH", the most kind and the most merciful and who I work for, all of the time.

I want to express my deep thanks and great gratitude to *Prof. Dr. Amira Mohammed Mokhtar*, Professor of clinical and chemical pathology, Faculty of Medicine Ain Shams University who provided me with her precious time & valuable comments to submit this work scientifically. It was a great honor to work under her supervision.

And I would like to express my grateful thanks and appreciation to *Dr. Shereen Ahmed El Masry*, Assistant professor of clinical and chemical pathology Faculty of medicine, Ain Shams University for her supervision, continuous guidance, cooperation and helpful instructions, *her intellectual and moral support helped immeasurably in so many Ways*.

I wish to thank all NICU staff; doctors and nurses participated in this study for their help and co-operation. I'm also deeply indebted to **Dr. Nour EL Din M. Abdel Aal,** Lecturer of pediatrics and neonatology, Faculty of Medicine Ain Shams University for his continuous guidance, help and encouragement throughout this work.

Finally, words alone cannot express the thanks I owe to my great family and my friends for their great support to me among last month's which contributed directly and indirectly in this work.

Heba Ezzat Hashem Osman

This work is dedicated to ...

My mother for always being there for me and to whom I owe everything I ever did in my life and will achieve.

Doctor Ahmed Kamal who help me greatly to get this work in best statistical form.

Doctor Ragya Labib (the chief doctor of OGD - ASUH-NICU), Doctor Amany Reda, Doctor Dena Essam, Doctor Rabab Mohammad, Doctor Islam Badr, Doctor Nansy Abu-Shady and all other paediatrician who help me greatly throughout this work.

My friends (Rhaghda Mohammed, Nahed shaded, Shams El-Doha, Salma shawkat & Menna Zakaria) for their honest hard work with me, hand in hand to get our study in its great form.

List of contents

Title	Page
	No.
Introduction	1
Aim of the work	4
Review of literature	5
Chapter 1:Neonatal sepsis	5
-Definitions	7
-Epidemiology of neonatal sepsis	9
-Classification of neonatal sepsis	12
-Routes of transmission of microorganisms	19
-Causative microorganisms	19
-Pathophysiology of the disease	24
-Clinical manifestations	29
-Differential diagnosis	36
-Complication of neonatal sepsis	38
-Outcome of the disease	40
Chapter 2: Diagnosis of neonatal sepsis	42
-Different modalities for diagnosis	42
-Clinical diagnosis of neonatal sepsis	43
-Clinical sepsis score	45
-Laboratory diagnosis	47
-Isolation of microorganisms	47
-Hematological tests	51
-Hematological system scoring (HSS)	54
-C Reactive Protein (CRP)	56
- Highly sensitive C Reactive Protein (Hs- CRP)	60
-Acute phase reactants	55
-Molecular diagnosis and its limitation	61
-imaging modality for diagnosis	64
Chapter 3:neutrophil CD64 as an early marker	66
-New markers help the diagnosis	66
-Cytokines	70
-Procalcitonin (PCT)	72
-Cell surface markers	75

-Flow cytometry in the diagnosis	75
-CD64 and its promising role	80
-CD11b	85
-CD14	86
-CD14 versus presepsin	87
-CD163	88
Chapter 4: prevention and management	89
-Management of neonatal sepsis	89
-Resuscitation	89
-Antibiotic Treatment of neonatal sepsis	90
- Candidiasis treatment	95
- Meningitis management	96
-Other lines of treatment	97
-Prevention of neonatal sepsis	105
-Neonatal measurement	106
-Maternal measurement	107
Subjects and Methods	112
-Analytical methods	116
1- CBC	116
2- CRP	118
3- Blood culture	119
4- CD64 expression	129
-Statistical methods	134
Results	144
- The diagnostic power of n CD64	145
- Blood culture results	168
- The prognostic power of n CD64	169
- Case reports	175
Discussion	178
Conclusion	214
Recommendations	215
Summary	217
References	222
Appendix	
Arabic summary	

List of Abbreviations

Abbreviations	Full term
AAP	American Academy of Pediatric
ADC	Analogue-to-Digital Conversion
AKF	Acute kidney Failure
ALT	Alanine Transferase
ANC	Absolute Neutrophil Count
APRs	Acute Phase Reactants
APTT	Activated Partial Thromboplastein Time
ASUH	Ain Shams University Hospital
ASUSH	Ain Shams University Specialized Hospital
AUC	Area Under the Curve
C. albicans	Candida albicans
C3	Complement 3
CBC	Complete Blood Count
CD11b	Cluster of Designation 11b
CD14	Cluster of Designation 14
CD163	Cluster of Designation 163
CD64	Cluster of Designation 64
CDC	Centre of Disease Prevention and Control
CLSI	Clinical and Laboratory Standards Institute
CMV	Cytomegalovirus
CNS	Central Nervous System
CoNS	Coagulase-Negative Staphylococci
CPAP	Continuous Positive Airway Pressure
CR3A	complement receptor 3 A
CRP	C-Reactive Protein
CSF	Cerebrospinal Fluid
CSFs	Colony stimulating factors
CVP	central venous pressure
dC	Delta Change
DIC	Disseminated Intravascular Coagulopathy
DNA	Deoxyribonucleic Acid
E. coli	Escherichia Coli
EDTA	Ethyl- Enediamine Tetraacetate
EFF	Efficacy
EOS	Early Onset Sepsis

-	
ETT	Endotracheal Tube
FcγRI	Fc-gamma receptor 1
FISH	Fluorescence In-Situ Hybridization
FITC	Fluorescein Isothiocyanate
FN	False Negative
FP	False Positive
FSC	Forward Scatter
GA	Gestational Age
GBS	Group B Streptococcus
G-CSF	Granulocyte Colony Stimulating Factor
GIT	Gastrointestinal Tract
HAIs	Healthcare Associated Infections
HDL	High Density Lipoprotein
Hg	Hemoglobin
HIV	Human Immunodeficiency Virus
Hs-CRP	Highly Sensitive C-Reactive Protein
HSS	Hematological Scoring System
HTN	Hypertension
I/M ratio	Immature/Mature ratio
I: T ratio	Immature: Total ratio
IAP	Intrapartum Antibiotic Prophylaxis
ICAM-1	Intercellular Adhesion Molecule 1
ΙF-γ	Interferon - Gamma
IL-1	Interlukin-1
IL-3	Interlukin-3
IL-6	Interleukin-6
IL-8	Interleukin-8
ILO	International Labor Organization
IQR	Interquartile Range
ITGAM	Integrin alpha M
ITS	Internal Transcribed Spacer
LBW	Low Birth Weight
LDL	Low Density Lipoprotein
LOH	Length Of Hospitalization
LOS	Late Onset Sepsis
LPS	Lipopolysaccharide
MCV	Mean Corpuscular Volume
MDR	Multidrug Resistant
MFI	Mean Fluorescent Intensity

MHA	Mueller-Hinton Agar
MODS	Multi-Organ Dysfunction Syndrome
MPV	Mean Platelet Volume
MRI	Magnetic Resonance Image
MRSA	
MSSA	Methicillin-Resistant Staphylococcus Aureus
NEC	Methicillin-Susceptible Staphylococcus Aureus
NICU	Necrotizing Enterocolitis Neonatal Intensive Care Unit
NPV	Negative Predictive Value
NS	Neonatal Sepsis
OGD	Obstetrics and Gynecology Department
P value	Probability value
PAI-1	Plasminogen activator inhibitor-1
PBS	Phosphate buffered saline
PCR	Polymerase Chain Reaction
PCT	Procalcitonin
PDW	Platelet Distribution Width
PLT	Platelet count
PMNL	Polymorph Nuclear Leukocyte
POC	Point Of Care
PPHN	Persistent Pulmonary Hypertension
PPV	Positive Predictive Value
PROM	Premature Rupture Of Membrane
PT	Prothrombin Time
RBCs	Red Blood Cells
RDS	Respiratory Distress Syndrome
ROC	Receiver Operating Characteristic
ROM	Rupture Of Membrane
S. agalactiae	Streptococcus agalactiae
S. aureus	Staphylococcus Aureus
SIRS	Systemic Inflammatory Response Syndrome.
Spp	Species
SPS	Sodium-polyanetholesulphonate
SPSS	Statistical Package for Special Sciences
SSC	Side Scatter
T ₁	total ranks
TAT	Thrombin-antithrombin III complex
TAT	Turnaround Time
TC	Total Cholesterol

TG	Triglyseride
1 G	
TLC	Total Leukocyte Count
TN	True Negative
TNF-α	Tumor Necrosis Factor-α
TP	True Positive
tPA	tissue Plasminogen Activator
TPN	Total Parenteral Nutrition
TSA	Trypticase Soya Agar
TSB	Tryptone Soya Broth
UN	United Nations
USA	United States of America
UTI	Urinary Tract Infection
VLBW	Very Low Birth Weight
WBCs	White Blood Cells
WHO	World Health Organization

List of Table

Table No	Title	Page No
Table (1)	Pathogenesis of congenital and neonatal infections	8
Table (2)	Comparison between EOS & LOS	12
Table (3)	EOS & LOS causative microorganisms.	23
Table (4)	Differential diagnosis of neonatal sepsis	36
Table (5)	Sepsis score	45
Table (6)	Lower limits of WBCs according to gestational age and timing of sampling	52
Table (7)	the normal values of WBC indices	52
Table (8)	Hematological scoring system	55
Table (9)	the Diagnostic markers of infection for preterm and newborn infants	67
Table(10)	Characteristics of an ideal infection marker	69
Table(11)	Management and prevention of neonatal sepsis	103
Table(12)	Preventive Strategies against neonatal sepsis	111
Table(13)	Normal hematological ranges according to the age.	117
Table(14)	Ingredient of BACTEC culture vials (40 ml).	121
Table(15)	Ingredients of Oxoid signal blood culture bottles	122
Table(16)	Characteristics of Study Groups	145
Table(17)	comparative statistics between the three studied groups as regard the demographic and laboratory data,	146
Table(18)	Descriptive and comparative statistics between the three groups as regard the studied laboratory markers.	148
Table(19)	Statistical Comparison between each Two of the Studied Groups as Regard the Studied Parameters	149
Table(20)	Statistical Comparison Between all septic patients (Gr1 +Gr2) and the control (Gr3) as Regard the Studied Parameters	153
Table(21)	Correlation between Neutrophil CD64 and the other parameters vs. Different Studied Parameters	154
Table(22)	Diagnostic Performance of CD64% and intensity	156

Table(23)	Diagnostic Performance of Neutrophil CD64 in comparison to the other conventional laboratory tests	156
Table(24)	The diagnostic performance of CD64, CRP and their combination.	159
Table(25)	Calculated Z score for both proved and suspected groups.	165
Table(26)	multi-regression analysis – model1	167
Table(27)	multi-regression analysis – model2	167
Table(28)	comparison between the two sepsis groups as regard the blood culture	169
Table(29)	Comparison between group1 and group2 as regard the outcome.	170
Table(30)	Comparison between the first and the follow up evaluation as regard still clinically sepsis group.	171
Table(31)	Comparison between the first and the follow up evaluation as regard still clinically improved group.	172
Table(32)	Comparison between still clinically sepsis and control.	173
Table(33)	Comparison between clinically improved sepsis and control.	173
Table(34)	Calculated Z score for the follow up parameters.	174
Table(35)	Neonatal deaths at OGD of ASUH NICU during the period of our study.	177

List of figures

Figure No	Title	Page No
Figure (1)	progression of neonatal sepsis	6
Figure (2)	The different causes of deaths among neonates.	10
Figure (3)	Summary of outcomes in terms of deaths and disability for neonates with sepsis, meningitis, or pneumonia born in South Asia, sub-Saharan Africa, and Latin America in 2010	11
Figure (4)	routes of acquiring neonatal infections	19
Figure (5)	Percentage of selected Potential pathogens in WHO regions. Numbers in parentheses indicate the total numbers of Potential pathogens isolated for each region	22
Figure (6)	Distribution of Gram-positive and Gram-negative potential pathogens by region	23
Figure (7)	the effect of neonatal sepsis on immune system	27
Figure (8)	Pathophysiology of sepsis syndrome	28
Figure(9)	Pathogenesis and clinical presentation of NS.	37
Figure(10)	Disease schema for outcome of severe bacterial infection in neonates	41
Figure(11)	Sepsis steps (SIRS- Sepsis- Severe sepsis – Septic shock)	44
Figure(12)	the diagnosis and the subsequent management of term and late preterm infants (>34 weeks) at Increased risk for neonatal bacterial infection (early-onset sepsis)	46
Figure(13)	Bactec blood culture bottles	48
Figure(14)	Bactec blood culture technique	48
Figure(15)	Mechanism of action and biological role of CRP	57
Figure(16)	Peptide nucleic acid FISH	62
Figure(17)	Chest X- ray of septic neonate	64
Figure(18)	Flow Cytometery	76
Figure(19)	Analysis of human peripheral blood cells by flow cytometry	77
Figure(20)	structural morphology of CD64 as Fc receptor	80
Figure(21)	Impact of GBS Chemoprophylaxis	108

Figure(22)	BD BACTEC™ Peds Plus™ /F Culture vials	121
Figure(23)	Oxoid signal blood culture bottles	123
Figure(24)	Diff- and IMI scatter gram showing graphic output of WBC differential results	133
Figure(25)	Outcome of sepsis pt. in our study.	147
Figure(26)	Box blot of CD64% values in three studied groups.	151
Figure(27)	Box blot of CRP values in three studied groups.	152
Figure(28)	comparison between the diagnostic performances of CD64%, CRP, CBC parameters as regard specificity%	157
Figure(29)	comparison between the diagnostic performances of CD64%, CRP, CBC parameters as regard sensitivity%	157
Figure(30)	comparison between the diagnostic performances of CD64%, CRP, CBC parameters as regard NPV%	158
Figure(31)	comparison between the diagnostic performances of CD64%, CRP, CBC parameters as regard PPV %	158
Figure(32)	comparison between the diagnostic performances of CD64%, CRP, CBC parameters as regard efficacy%	158
Figure(33)	the specificity of CD64 and CRP alone and the combination	159
Figure(34)	The sensitivity of CD64 and CRP alone and the combination.	160
Figure(35)	The NPV% of CD64 and CRP alone and the combination.	160
Figure(36)	The PPV% of CD64 and CRP alone and the combination.	160
Figure(37)	The efficacy% of CD64 and CRP alone and the combination.	161
Figure(38)	ROC curve analysis showing the diagnostic performance of CD64 for discriminating patients with sepsis from those without	161
Figure(39)	ROC curve analysis showing the diagnostic performance of CD64, CRP and their combination for discriminating patients with sepsis from those without	162
Figure(40)	ROC curve analysis showing the diagnostic performance of all studied parameters for discriminating patients with sepsis from those without	163
Figure(41)	AUC of all the studied parameters.	164
Figure(42)	the distribution of the causative organisms in our study	168

INTRODUCTION

Sepsis in newborns is a common fatal disorder affecting 1.1-2.7% of all newborns *(Stoll et al., 2011)*. In spite of extensive research and development in understanding and treatment of neonatal sepsis, sepsis continues to be a major source of morbidity and mortality in the neonatal population *(Lawn et al., 2006)*.

Neonatal sepsis (NS) remains a diagnostic burden problem by showing minimal initial symptoms of subtle character, nonspecific manifestations, and diagnostic pitfalls. The clinical course can be fulminate and fatal if treatment is not commenced promptly. It is therefore crucial to establish early diagnosis and initiate adequate therapy (Volker et al., 2013).

Neonatal sepsis is classified into early-onset sepsis (EOS) within the first 72 hours of life and late-onset sepsis (LOS) afterwards (*Stoll et al., 2011*). Early-onset sepsis is most often related to perinatal factors including prolonged rupture of amniotic membranes, maternal colonization with group B β streptococcus(GBS) and maternal chorio amnionitis (*Ganatra et al.,2010*). Late-onset sepsis, diagnosed >72 hours after birth, is primarily hospital acquired and occurs more commonly in preterm *infants* (*Bizzarro et al., 2005*).