

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electrical Power and Machines Department

Optimal Planning for Distributed Generation In Distribution Networks

Thesis

Submitted in partial fulfillment for/ the M.Sc. Degree in Electrical Engineering

Submitted By

Eng. May Mohamed Youssry Ahmed

B.Sc. of Electrical Engineering Ain Shams University

Supervised By

Prof. Dr. Ibrahim Helal

Faculty of Engineering Ain Shams University

Dr. Mohamed Abd-El-Aziz Abd-El-Rahman

Faculty of Engineering Ain Shams University

Cairo, 2009

STATEMENT

This dissertation is submitted to Ain Shams University in partial

fulfillment of the degree of Master of Science in Electrical Engineering

(Electrical Power and Machines).

The included work in this thesis has been carried out by the author at

the Electrical Power and Machines Department, Faculty of Engineering,

Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at

any other university or institution.

Name: May Mohamed Youssry

Signature:

Date:

i

Curriculum Vitae

Name of Researcher May Mohamed Youssry

Date of Birth 12/10/1979

Place of Birth Egypt

First University Degree

B.Sc. in Electrical Engineering – Power

and Machines

Name of University Ain Shams University

Date of Degree June 2001

Electrical Engineer in the Egyptian

Current Job Electricity Utility and Consumer

Protection Regulatory

ACKNOWLEDGEMENT

الحمد لله رب العالمين

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ibrahim Helal** for his valuable guidance, encouragement and strong support.

I would like to thank **Dr. Mohamed Abdel Aziz** for his close following up and guidance.

Many thanks are to my colleagues and friends for their support and help during the work of my thesis.

Special thanks to my family for their great support and love.

Optimal Planning for Distributed Generation In Distribution Networks

Abstract

As a result of the restructuring of electricity markets, increasing amounts of distributed generation (DG) are connected to distribution networks to face load growth and distribution capacity bottlenecks. DG is expected to play an important role in the electric power system infrastructure and market.

The typical way to meet the demand is to build additional central power generation where the transmission and distribution (T&D) infrastructure, in such a case, represents significant cost in both fixed and running domains. A DG unit does not have T&D burden because it is already at the site of electrical use. DG can provide better service at lower cost in many applications by avoiding the extra cost and lower reliability imposed by transmission and distribution. The problem however, with DG is to reach the optimal sizing and siting of the units.

In this thesis an optimization model has been used to obtain the optimal sizing and siting of DG units. The model has been used to estimate the optimum penetration of the distributed generation in distribution networks. Environmental impact, CO₂ emission, has been considered as a constraint in the optimization problem.

Two realistic case studies have been analyzed to verify the validity of the adopted approach.

Key words: Distributed generation DG, optimal placement, benefits of distributed generation, cost analysis, Losses reduction based optimization and sizing & siting of DG units.

Table of Contents

Statement		i
Curriculum V	/itae	ii
ACKNOWL	EDGEMENT	iii
Abstract		iv
Table of Con	tents	v
List of Figure	es	viii
List of Tables	s	ix
List of Symb	ols & Abbreviations	xii
Chapter 1: In	troduction	1
1.1. Gen	neral	1
1.2. Lite	erature Review:	2
1.3. The	sis Objective:	5
1.4. The	sis Outline:	6
Chapter 2 Dis	stributed Generation Technologies	7
2.1. Gen	neral	7
2.2. Dist	tributed Generation Definition	8
2.3. DG	Technologies	9
2.3.1.	Internal Combustion Engines	9
2.3.2.	Microturbines	9
2.3.3.	Combustion Gas Turbines	9
2.3.4.	Fuel Cells	10
2.3.5.	Photovoltaic (PV)	10
2.3.6.	Wind Turbines	11
2.4. Imp	eact of using DG	11

	2.4.1.	Perspective to Electric Utilities	. 12
	2.4.2.	Perspective to Customer	. 12
Ch	apter 3 Distri	buted Generation Optimization Model	. 15
	3.1. Genera	al	. 15
	3.2. DG Op	otimization Model	. 16
	3.2.1.	Mathematical formulation of optimization problem	. 16
	3.2.2.	Developed Algorithm	. 20
	3.2.3.	Example (A Simple 2 – Bus System)	. 22
	3.3. Differe	ent DG Siting and Sizing Techniques	. 26
	3.3.1.	Losses reduction based technique [18]	. 26
	3.3.2.	Cost reduction based technique [19]	. 28
	3.4. Impler	mentation of Siting & Sizing Techniques on Diffe	erent
	Electrical	Networks Configuration	. 28
	3.4.1.	Case Study I	. 31
	3.4.2.	Case Study II	. 38
Ch	apter 4 Distri	buted Generation Environmental Impact	. 45
	4.1. Genera	al	. 45
	4.2. Defini	tions	. 45
	4.3. DG Op	otimization Model Considering Envir. Constraint	. 47
	4.3.1.	Environmental Constraint	. 47
	4.3.2.	Emission Factors Calculation	. 47
	4.4. Apply	ing Envir. Constraint to the Optimization Model	. 50
	4.4.1.	The IEEE 6 Bus System	. 50
	4.4.2.	Radial System (Kumamoto 15 Bus Radial System)	. 53

Chapter 5 (Optimal Distributed Generation for Practical Networks55
5.1. G	eneral55
5.2. C	ase Study I - 106 Bus Ring Distribution System56
5.2.1.	Base Case
5.2.2.	Testing the 106 bus system without envir. constraint .59
5.2.3.	Testing the 106 bus system under envir. constraint65
5.3. C	ase Study II - The 135 Bus Ring Distribution System68
5.3.1.	Base Case68
5.3.2.	Testing the 135 bus system without envir. constraint .71
5.3.3.	Testing the 135 bus system under envir.l constraint76
Chapter 6	83
6.1. C	onclusions83
6.2. Fu	uture Work84
References	85
Appendices	91

List of Figures

Figure (3. 1) Program flowchart	. 21
Figure (3. 2) Simple 2 - bus system	. 22
Figure (3. 3) Flowchart of losses reduction based technique	. 27
Figure (3. 4) Flowchart of cost reduction based technique	. 29
Figure (3. 5) Single Line Diagram of IEEE 6 Bus System	. 31
Figure (3.6) Proposed DG sizes for IEEE 6 bus system using the lo	sses
reduction based technique	. 34
Figure (3.7) Proposed DG capacities for the IEEE 6 bus system using	g the
cost reduction based technique	. 37
Figure (3.8) Single line Diagram of Kumamoto 15 bus radial system.	. 38
Figure (3.9) Proposed DG sizes for 15 bus radial distribution sys	stem
using the losses reduction based technique	. 41
Figure (4.1) Proposed DG sizes for IEEE 6 bus system	. 52
Figure (4.2) Proposed DG sizes for the 15 bus system	'53
Figure (5.1) Case Study I	. 57
Figure (5.2) Proposed DG sizes for case study I	. 63
Figure (5.3) Proposed DG sizes for case study I under environment	ental
constraint	. 66
Figure (5.4) Case Study II	. 69
Figure (5.5) Proposed DG sizes for the case study II	. 74
Figure (5.6) Proposed DG sizes for case study II under environment	ental
constraint	. 78

List of Tables

Table (2.1) Comparison of DG Technologies
Table (3.1) Bus Voltages for IEEE 6 bus system without DG32
Table (3.2)Bus ranking of IEEE 6 bus sys according to system losses 322
Table (3.3) Results of siting DG units at candidate buses of IEEE 6 bus
system using the losses reduction based technique
Table (3.4) Results of optimization model of the IEEE 6 bus system
using the loss reduction based technique
Table (3.5) Bus voltages of the IEEE 6 -bus system after DG Installation
using the losses reduction based technique
Table (3.6) Initial results & proposed capacities for the IEEE 6 bus
system using the cost reduction based technique
Table (3.7) BCR of each bus of IEEE 6 bus system
Table (3.8) Bus voltages of the IEEE 6 bus system after installing DG
units using the cost reduction based technique
Table (3.9) Bus Voltages for 15 bus radial distribution system without
using DG39
Table (3.10) Bus ranking of the 15 bus radial distribution system
according to system losses
Table (3.11) Results of siting DG units at candidate buses of 15 bus
radial distribution system using the losses reduction technique40
Table (3.12) Results of optimization model of 15 bus system using the loss reduction based technique
Table (3.13) Bus Voltages of the 15 bus radial system after DG
installation using the losses reduction based technique

Table (3.14) Initial results & proposed capacities for 15 bus distribution
system using cost reduction based technique
Table (3.15) BCR of each bus of the 15 bus radial dustribution system 43
Table (4. 1) GHG main sources
Table (4.2) Emission Factors for electric utility and industrial combustion
systems
Table (4.3) Global Warming Potential Factors
Table (4.4) Results of siting DG units at each bus for IEEE 6 bus system
under environmental constraint
Table (4.5) Bus voltages of IEEE 6 bus system after installing DG 52
Table (4.6) Results of siting DG units at each bus for 15 bus radial
distribution system
Table (4.7) Bus voltages of 15 bus radial distribution system after
installing DG
Table (5.1) Initial bus voltage of case study I
Table (5. 2) Bus ranking of case study I
Table (5. 3) Results of siting DG units at candidate buses case studyI 61
Table (5.4) Results of the DG optimization model for case studyI
without environmental constraint
Table (5. 5) Bus voltages for case study I after installing DG 64
Table (5.6) Siting DG units at candidate buses for case studying I under
environmental constraint
Table (5.7) Results of the DG optimization model for case study I with
environmental constraint
Table (5.8) Bus voltages for the case studying I after installing DG under
environmental constraint
Table (5. 9) Initial Bus voltages of case study II
Table (5. 10) Bus ranking of case study II

Table (5. 11) Results of siting DG units at candidate buses for case
study II
Table (5.12) Results of the DG optimization model for case studyI
without environmental constraint
Table (5.13) Bus voltages for the case studying II after installing DG 75
Table (5.14) Siting DG units at candidate buses for case studying II unde
environmental constraint
Table (5.15) Results of the DG optimization model for case study II with
environmental constraint
Table (5.16) Bus voltages for case studying II after installing DG under
environmental constraint
Table (5.17) Summary of chapter (5) results80

List of Symbols & Abbreviations

DG	Distributed Generation
CHP	Combined heat and power systems
PV	Photo voltaic
T&D	Transmission and distribution
f(x)	Objective function
g(x)	Equality constraints
h(x)	Inequality constraints
x	Vector of control and state variables
n	Total number of system buses
c_{gca}	Active power component of distributed generation
	investments costs
c_{gcr}	Reactive power component of DG investments costs
P_g^{max}	Maximum distributed generation active power
Q_g^{max}	Maximum distributed generation reactive power
a_i	Generator constant LE/hr
b_i	Generator constant LE/MW/hr
c_i	Generator constant LE/MW ² /hr
c_{gr}	Running cost of DG output reactive power (LE/Mvar/hr)
P_g	Active DG generated power in (MW)
Q_g	Reactive DG generated power in (Mvar)
c_{sa}	Market price for active power (LE/MWh/hr)

 c_{sr} Market price for reactive power (LE/Mvar/hr)

 P_s System active power in (MW)

 Q_s System reactive power in (Mvar)

 P_{loss} active and reactive power losses in (MW)

 Q_{loss} reactive power losses in (Mvar)

 P_D Active power demand

 Q_D Reactive power demand

 P_s^{max} Max distribution substation capacity

 P_{ii} Power flow from bus i to bus j in (MW)

 P_{ij}^{max} Thermal capacity of distribution lines and cables (MW)

 ΔV Voltage drop

pf Power factor

BCR Benefit-cost-Ratio

GHG Green House Gases

CO₂ Carbon Dioxide

CH₄ Methane

N₂O Nitrous Oxide

SF₆ Sulfur hexafluoride

 K_1 CO₂ emission factor for the central stations

 K_2 Gas turbine CO_2 emission rate

 P_{sb} System power for base case

Chapter 1

Introduction

1.1. General

Normally, electrical power systems are designed following a typical arrangement that adopts the concept of a large central power generation plants. The central power plants produce all the power which is needed to feed the connected loads through a transmission network. Transmission network is used to transport the generated power from the generation point to the delivery points of the customers, sometimes over considerable distance, which leads to high technical system losses. In some cases, it will be difficult to supply customers within the required voltage levels.

Recently, a new concept has considered an alternative solution for electric power generation. Small generating units are connected directly to serve a part of the connected loads. This concept is known as distributed generation DG.

DG is expected to play an important role in the electric power system infrastructure. DG reduces (i) capital investments, by reducing the need

1