### **List of Tables**

| Table<br>No. | Table Title                                                                                   | Page<br>No. |
|--------------|-----------------------------------------------------------------------------------------------|-------------|
| 1            | Fourteen disorders account for about 85% of cases with approximated frequency presented below | 40          |
| 2            | Categories of Presenting Symptoms in the Neonates                                             | 45          |

# **List of Figures**

| Figure | Figure Title                                            | Page       |
|--------|---------------------------------------------------------|------------|
| No.    |                                                         | No.        |
| 1      | Illustration showing fetal heart development            | 7          |
| 2      | Illustration showing conducting system of the heart     | 13         |
| 3      | Illustration showing fetal blood flow                   | 17         |
| 4      | Illustration showing postnatal blood flow               | 17         |
| 5      | Image showing sternocostal surface                      | 20         |
| 6      | Illustration showing sternocostal surface of the heart  | 20         |
| 7      | Image showing the diaphragmatic surface                 | 21         |
| 8      | Illustration showing the diaphragmatic surface of the   | 22         |
| Ü      | heart                                                   |            |
| 9      | Figure showing opened right atrium                      | 24         |
| 10     | Section in a heart showing Rt. and Lt. Ventricles       | 28         |
| 11     | Illustration showing Rt. and Lt. Ventricles             | 29         |
| 12     | Illustration showing opened Tricuspid and Mitral valves | 32         |
|        | at ventricular systole                                  | 0 <b>2</b> |
| 13     | Illustration showing opened Aortic and Pulmonary        | 32         |
| 10     | valves at ventricular diastole                          |            |
| 14     | Closed heart illustration presenting the great vessels  | 37         |
| 15     | Opened heart illustration presenting the great vessels  | 38         |
| 16     | Heart Defects in the USA from (1997-2003) showing       | 41         |
| 10     | rates over time of selected heart defects               |            |
| 17     | Illustration showing ASD                                | 48         |
| 18     | Illustration showing VSD                                | 51         |
| 19     | Illustration showing PDA                                | 52         |
| 20     | Illustration showing Fallot                             | 55         |
| 21     | Illustration showing TGA                                | 57         |
| 22     | Illustration showing TAPVC                              | 59         |
| 23     | Illustration showing hypoplastic left heart             | 60         |
| 24     | Illustration showing Pulmonary stenosis                 | 61         |

| Figure | Figure Wille                                            | Page |
|--------|---------------------------------------------------------|------|
| No.    | Figure Title                                            | No.  |
| 25     | Illustration showing Pulmonary atresia                  | 61   |
| 26     | Illustration showing aortic stenosis                    | 63   |
| 27     | Illustration showing Coarctation of the Aorta           | 65   |
| 28     | Illustration showing Tricuspid atresia                  | 67   |
| 29     | Position of the heart in the thorax                     | 81   |
| 30     | Cardiac axis imaging planes                             | 83   |
| 31     | Short-axis images                                       | 86   |
| 32     | Horizontal long-axis images                             | 87   |
| 33     | Vertical long-axis images                               | 88   |
| 34     | Alignment of the thoracic aorta using a 3-point plane   | 89   |
| 35     | The right (RPA) and left pulmonary arteries (LPA)       | 90   |
| 36     | Right atrium at (a) end diastole and (b) end systole    | 91   |
| 37     | Right atrial appendage                                  | 93   |
| 38     | Left atrium at end diastole (a) and end systole (b)     | 95   |
| 39     | Right and left atrial appendage                         | 96   |
| 40     | Atrial (interatrial) septum. Horizontal long-axis image | 98   |
| 41     | Components of the right ventricle                       | 99   |
| 42     | Components of the left ventricle                        | 102  |
| 43     | Left ventricular papillary muscles                      | 103  |
| 44     | Tricuspid and mitral valve                              | 106  |
| 45     | Aortic valve cusps in closed (a) and open (b) condition | 107  |
| 46     | Transverse images                                       | 109  |
| 47     | Coronal images                                          | 110  |
| 48     | Sagittal images                                         | 111  |
| 40     | FLASH 2D cine MRI of the heart in four chamber          | 116  |
| 49     | View: ASD of septum secundum                            | 110  |
| 50     | FLASH 2D cine MRI of the heart in four chamber view     | 110  |
|        | VSD                                                     | 118  |
| 51     | Balanced-SSFP four-chamber view of a complete           | 119  |
|        | AVSD                                                    | 119  |

| Figure | Figure Title                                            | Page |
|--------|---------------------------------------------------------|------|
| No.    | 1.5010 1100                                             | No.  |
| 52     | Axial electrocardiograph-gated, spin-echo magnetic      | 121  |
|        | resonance image                                         | 121  |
| 53     | Coronal breath-hold magnetic resonance angiogram        | 121  |
| 54     | Left anterior oblique cine magnetic resonance           | 122  |
| 54     | angiogram                                               | 122  |
| 55     | MRI of the heart in an infant with tetralogy of Fallot  | 125  |
| 56     | MRI of tetralogy of Fallot in an infant (same patient)  | 125  |
| 57     | Dynamic cine MR images of the heart, obtained with a    | 126  |
| 97     | fast imaging with steadystate precession sequence, TOF  | 120  |
| 58     | Axial black-blood turbo-spin-echo images of             | 128  |
| 90     | transposition of the great arteries                     | 120  |
| 59     | Coronal MRI of the chest.                               | 130  |
| 60     | Coronal T1-weighted MRI of the chest in a patient with  | 130  |
| 00     | truncus arteriosus                                      |      |
| 61     | Axial T1-weighted MRI of the chest                      | 131  |
| 62     | Sagittal T1-weighted MRI of the chest in a patient with | 131  |
| 02     | truncus arteriosus                                      | 101  |
| 63     | 65-year-old man with severe aortic stenosis and         | 134  |
| 00     | bicuspid aortic valve                                   | 104  |
| 64     | Image in FSE "black blood" for the study of aortic      | 196  |
| 04     | coarctation                                             | 136  |
| 65     | Valvular pulmonic stenosis by Cine MRI in the right     | 138  |
| 69     | ventricular outflow tract plane                         | 190  |
| 66     | Axial ECG-gated spin-echo MRI                           | 141  |
| 67     | Axial ECG-gated spin-echo MRI                           | 141  |
| 68     | Axial ECG-gated spin-echo MRI in an adolescent          | 1.40 |
|        | patient with tricuspid atresia                          | 142  |
| 69     | Axial ECG-gated spin-echo MRI in a patient with         | 146  |
|        | Ebstein anomaly                                         |      |
| 70     | Axial ECG-gated spin-echo MRI in the same patient       | 147  |

| Figure | Figure Title                                          | Page |
|--------|-------------------------------------------------------|------|
| No.    | rigure Title                                          | No.  |
| 71     | Interatrial defect of the sinus-venous type in a SPGR | 151  |
| 71     | image                                                 | 151  |
| 72     | FLASH 2D cine MRI showing ASD and VSD                 | 154  |
| 73     | Spin-echo MRI showing ASD                             | 156  |
| 74     | MR images detecting size and shape of an ASD          | 158  |
| 75     | Pulmonary MRI angiography demonstrating the           | 1.00 |
| 75     | pulmonary anatomy                                     | 160  |
| 70     | Coronal and Axial MRI showing absent Pulmonary        | 1.00 |
| 76     | Valve and dilated Pulmonary Artery                    | 162  |
|        | Systolic and Diastolic Phases in axial cine MRI in a  | 1.00 |
| 77     | case of Fallot with absent pulmonary valve            | 163  |
| 78     | MRI and MRA in a female with Fallot                   | 165  |
| 70     | Transverse T2-weighted black-blood spin-echo MRI in   | 1.07 |
| 79     | a case of Ebestien anomaly                            | 167  |
| 00     | Transverse bright-blood gradient-recalled-echo cine   | 1.00 |
| 80     | MR images in a case of Ebestien anomaly               | 168  |
| 81     | Cine gradient echo image                              | 169  |
| 82     | Axial spin echo image                                 | 169  |
| 83     | Coronal spin echo image                               | 170  |
| 84     | MRA showing aortic arch hypoplasia and coarctation    | 171  |
| 85     | Short axis spin-echo MRI showing subaortic stenosis   | 172  |
| 86     | MRA in a case of PAPVR                                | 174  |

## **Contents**

|                                                                                      | Page |
|--------------------------------------------------------------------------------------|------|
| ☐ Introduction                                                                       | 1    |
| Aim of the Work                                                                      | 4    |
| Review of Literature                                                                 | 5    |
| • Chapter 1: Emberyology and anatomy of the heart and great vessels                  | 5    |
| • Chapter 2: Pathology and types of congenital heart diseases                        | 39   |
| • Chapter 3: Techniques of MRI examination for the heart and great vessels           | 71   |
| • Chapter 4: Normal appearance of the heart and the great vessels by MRI examination | 91   |
| • Chapter 5: MRI manifestations of the commonest congenital heart diseases           | 112  |
| Summary and Conclusion                                                               | 175  |
| References                                                                           | 182  |
| Arabic Summary                                                                       | 1-2  |

# دور الفحص بالرنين المغناطيسي في تقييم أمراض القلب الخلقية

رسالة مقدمة توطئة للحصول على درجة الماجستير في الأشعة التشخيصية

مقدمة من الطبيبة / زينب صفاء عبد الوهاب مصطفى

تحت إشراف الأستاذ الدكتور / سحر محمد الجعفري أستاذ الأشعة التشخيصية

> كلية الطب جامعة عين شمس

الدكتور / أحمد فاروق عبد العال مدرس الأشعة التشخيصية كلية الطب جامعة عين شمس

> كلية الطب جامعة عين شمس **2009**

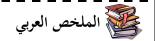
# Role of Cardiac MRI in Evaluation of Congenital Heart Disease

#### Essay

Submitted for the Partial Fulfilment of Master Degree in Radiodiagnosis

By Zeinab Safaa Abd El-Wahab Mustafa (M.B., B.Ch.)

Under Supervision of


#### Prof. Dr./ Sahar Mohamed El-Gaafary

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

#### **Dr./ Ahmed Farouk Abd El-Aal**

Lecturer of Radiodiganosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University 2009



#### الملخص العربي

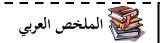
يتميز التصوير بالرنين المغناطيسي عن غيره من أساليب التصوير بميزة رئيسية إذا ما كان الحديث عن تصوير القلب. تتمثل هذه الميزة في القدرة على التفريق بين الأنواع المختلفة من الأنسجة اعتماداً على الخصائص المختلفة والمتعددة للأنسجة. وعلى سبيل المثال، فإننا نعتمد عند استخدام الأشعة المقطعية والأشعة السينية على كثافة النسيج؛ فكلما زادت كثافة النسيج كلما ظهر النسيج أكثر بياضاً؛ وكلما قلت كثافة النسيج كلما ظهر أكثر قتامة. ومن هنا ففي حالة عدم وجود اختلاف كبير بين كثافة الأنسجة، فلن نستطيع أن نميز بينهم باستخدام الأشعة المقطعية أو الأشعة السينية إلا إذا قمنا بإعداد التباين المناسب. ومع استخدام الأشعة فوق الصوتية وتخطيط صدى القلب فإننا نعتمد على قدرة النسيج في توليد الصوت من أجل إخراج الصورة المطلوبة. يوفر التصوير بالرنين المغناطيسي طرقاً عديدة مختلفة لفحص النسيج مثل تي 1 أو تي 2، والتصوير بقمع الدهون، والتصوير بالتروية، والتصوير بالإننشار الإشعاعي، وغيرها. توجد أيضاً تقنية التحليل الطيفي باستخدام الرنين المغناطيسي والتي تركز على البصمة الكيميائية الحيوية للأنسجة المختلفة. ومع ما يوفره التصوير بالرنين المغناطيسي من أدوات، بالإضافة إلى التقدم التكنولوجي الذي يساهم في إنجاز الأعمال بصورة أسرع فإن بإمكاننا التشخيص بصورة أفضل وأكثر دقة.

إن هناك عدد من التطبيقات التى يصبح فيها إجراء التصوير بالرنين المغناطيسى على القلب أكثر قوة. فعلى أبسط المستويات، يعتبر قياس وظيفة القلب باستخدام الرنين المغناطيسى هى التقنية القياسية والمعيارية إذا ما

قورنت بالطرق الأخرى. يقدم التصوير بالرنين المغناطيسى وضوحاً مكانياً وتبايناً عالى الدقة داخل النسيج – من خلال هذه التقنية نستطيع رؤية الحدود الفاصلة بين عضلة القلب وبين الدم بصورة واضحة. يندر مع التصوير بالرنين المغناطيسى استخدام الأدوات الأخرى المتداخلة مع جهاز رسم القلب واختبارات الإجهاد الخاصة بالطب النووى والتي يتم اللجوء إليها في حالة كبر حجم الجسم للمريض أو "هيئة المريض"، شريطة أن يجتاز جسم ثقب المغناطيس. تساعد الصور عالية الدقة على تمكيننا من الحصول على معلومات كمية عن وظيفة القلب. تعتبر التفاصيل الخاصة بحركية الجدار في غاية الحساسية – وعلى سبيل المثال، يمكننا إعداد تقبيم كمي للقصور الإنقباضي والإنبساطي لكل جزء من عضلة البطين اليمني واليسرى. إن هذا الأمر في غاية الأهمية لعمل التشخيص المبكر للأمراض الدقيقة وكذلك لاختبار العلاجات اللازمة.

ومما يميزها عن غيرها، تعتمد جودة صور الرنين المغناطيسي على القلب المتحصل عليها على فهم طبيعة وكيفية تكون هذه الصور. وفي مجال التصوير بالرنين المغناطيسي، يمثل تصوير القلب تقنياً أحد الموضوعات الأكثر تحدياً حيث لا يمتلك أخصائي الأشعة وأطباء القلب الخلفية الكاملة عنها. ومع توافر الآلات، ثقتقد الخبرة اللازمة لمعرفة كيفية تسخيرها لهذا الغرض. إن بعض التقنيات مثل التقنيات المعتمدة على نظرية الدقة في الحالة الثابتة وتصوير اختبار الحيوية تتطلب بعض الخبرة للتعامل معها.

تعانى بعض الحالات من رهاب الأماكن الضيقة والذى يشعرون به عند إخضاعهم للمغناطيس. كما أن هناك بعض الحالات الأخرى ذات


الأجسام الكبيرة والتى لا يمكن أن تجتاز ثقب المغناطيس. وبصفة عامة، يمكن إخضاع معظم المرضى للدراسة والفحص. إن أحد الحدود الفاصلة هو أننا لا نستطيع تصوير المرضى الذين قاموا بزرع مزيلات الرجفان أو بتركيب مُقوِّم نظم القلب. لكن وكما هو الحال، فكل شئ فى تغير مستمر. وحيث تزايدت أهمية استخدام التصوير بالرنين المغناطيسى فى التشخيص، يحاول المجتمع البحثى وضع الحلول لبعض هذه القيود. فقد سجلت بعض التقارير القادمة من القارة الأوروبية تجربة الباحثين الخاصة بوضع بعض المرضى الذين قاموا بتركيب مقومات نظم للقلب داخل أجهزة التصوير بالرنين المغناطيسى. إن هؤلاء مرضى معتمدين على مقومات نظم القلب وتتم متابعتهم بعناية فائقة. لم يلق هذا التوجه قبولاً على نطاق واسع، وإن كان يوحى بتبنى اتجاه جديد سوف يلقى مزيداً من الاهتمام فيما بعد.

تنتشر أمراض القلب الخلقية إكلينيكياً وتحدث بنسبة 0.8% في حديثي الولادة الأحياء. فبينما يخضع العديد من حديثي الولادة والأطفال لإجراءات الجراحة، نجد أن ما يقرب من 50.000 من البالغين الذين يعانون من أحد أمراض القلب الخلقية قد خضعوا للعلاج الجراحي و 150.000 على الأقل من البالغين تعرضوا لحالات كبيرة من عدم التعرف على المرض، أو لسوء التشخيص، أو لفئات من الأمراض الغير قابلة للتشخيص والعلاج.

لا يمكن اعتبار التصوير بالرنين المغناطيسى للقلب استراتيجية أولية للتصوير في حالات أمراض القلب الخلقية، غير أن عوامل أخرى مثل الحصول على صورة عالية الدقة في جميع الاتجاهات، والصور الحركية للقلب والتصوير الوعائي للأورطي، والشرايين والأوردة الرئوية تجعله وسيلة

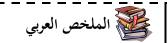
قيمة في مجال التشخيص. تتضمن خطة عمل التصوير بالرنين المغناطيسي بالنسبة للأمراض الخلقية لدى الأطفال عناصر تشريحية ووظيفية. تستخدم مطيافية صدى سبين (رسم القلب الكهربائي) وتصوير الأوعية عالى التباين بالرنين المغناطيسي في توفير معلومات التشريح، في حين يتم الحصول على المعلومات الوظيفية من خلال الفحوصات المخبرية مثل Cine SSEP و المعلومات الوظيفية من المتدرج) وغيرها. توفر هذه السبل مكملة لبنية وتشريح القلب بالإضافة إلى المعلومات الوظيفية عبر البطينين، والصمامات، والتحويلات الوعائية، وحالات الخلل، والتوصيلات المختلفة. في الوقت الذي تركز تقنيات صدى سبين على البنية نظراً لدقة التباين التي تتميز بها، تركز تقنية الصدى المتدرج على المعلومات الوظيفية من خلال سلسلة من الصور المأخوذة أثناء دورة القلب وهو ما يعكس الدقة العالية المؤقتة لها.

يعتبر التصوير بالرنين المغناطيسي على القلب وسيلة قيمة لتقييم أمراض القلب الخلقية حيث تملك تقنية التصوير بالرنين المغناطيسي الكثير كي نقدمه في هذا الإطار: (أ) الحصول على صور بنيوية عالية الدقة، (ب) توفير معلومات كمية مفيدة فيما يخص الآفات المرتدة أو التضيقية بأعلى سرعة وقياسات التدفق (ج) القياس الكمي للتحويلات. إن أكبر التحديات التي يواجهها التصوير بالرنين المغناطيسي هو اصطناع الحركة من القلب، والتركيبات الوعائية المجاورة، والتنفس. إن مع التطور المتواصل في تكنولوجيا الأدوات المتدرجة وتسلسل النبضات، تتوفر الآن سلسلة التصوير التي من شأنها "تجميد" حركية القلب خلال الدورة القلبية. فضلاً عن ذلك، فإن التقدم



الحادث فى التسلسل السريع للنبضات، تتوافر تقنية التصوير مع كبح التنفس، وهو وسيلة هامة لملائمة لهذه المجموعة الحركية التى يتعرض لها القلب خلال التنفس.

لقد تم تحديد الحالات التي تستدعي استخدام التصوير بالرنين المغناطيسي لتقييم المرضى من أصحاب أمراض القلب الخلقية. وتشمل دواعي الاستخدام في الوقت الحالي: (1) الوصف القطعي لعيوب القلب؛ (2) تقييم العيوب الموجودة بالأبهر الصدري؛ (3) الكشف الغير جراحي (غير تداخلي) والقياس الكمي للتحويلات، وحالات التضيق، والقلس؛ (4) تقييم تشوهات القلب الخلقية المخروطية الجذعية. وتشوهات الأوردة الجهازية؛ (6): دراسات ما بعد الجراحة.


#### مورفولوجيا ما بعد الجراحة:

يقوم تخطيط صدى القلب، عن طريق الصدر، بدور محدد في المرضى الذين خضعوا للجراحة. يحول النسيج الندبى دون التوصل إلى التقييم الصحيح لحالات ما بعد الجراحة فيما يتعلق بأمراض القلب التاجية. وقد لوحظ صعوبة إجراء تخطيط صدى القلب عن طريق الصدر في حالة وضع تحويلات أو قنوات بطينية رئوية إضافية خلف القص. إن لتقنية التصوير بالرنين المغناطيسي أهمية عظيمة في تقييم المضاعفات الجراحية في العديد من حالات الإصابة بأمراض القلب التاجية، ويمكن أن تساعد في تقييم حجم غرف القلب والأوعية كبيرة الحجم، وحالات التفاغر، ودرجة سالكية (عدم

انسداد) التحويلات، وإذا ما كان يوجد تضيق أو انسداد داخل الشريان أو القناة الرئوية، التمدد الوعائى الكاذب للأورطى أو الشريان الرئوى بعد القيام بإصلاح التضيق بالأبهر أو برباعية فالو، وعلاج الجلطات أو النوابت وضغط الوريد الرئوى أو الشعبة الهوائية عن طريق توسيع الأذين أو الأوعية الدموية الكبيرة.

#### الخلاصـــة:

إن التصوير بالرنين المغناطيسي هو الوسيلة محل الاختيار في حالات تشخيص عيوب الشجرة الشريانية الرئوية، الأوردة الرئوية، وقوس الأبهر، كما أنها الوسيلة المستخدمة في حالات نقييم أمراض القلب المعقدة ومورفولوجيا ما بعد الجراحة للمرضى البالغين. للتصوير بالرنين المغناطيسي دور تكميلي في نقييم العيوب داخل القلب في جلسات تخطيط صدى القلب عبر الصدر أو عبر المرئ. إن بإمكاننا تحديد مستوى الصوت، والكتلة، والكسر القذفي للبطين الأيمن والأيسر، جنباً إلى جنب مع حركية الجدار، وتحليل الثخانة، باستخدام تقنية التصوير السريع بالرنين المغناطيسي. يتم طريق مرحلة التباين مرمز السرعة للتصوير بالرنين المغناطيسي المعتمد على طريق مرحلة التباين مرمز السرعة للتصوير بالرنين المغناطيسي المعتمد على الخاصة بالتشخيص المورفولوجي لأمراض القلب الخلقية في معظم المرضي المناطيسي كبيرة في مجال التشخيص والآثار العلاجية فيما يخص كيفية التعامل مع الحالة قبل وبعد جراحة أمراض القلب التاجية.



لقد بدأ استخدام التصوير بالرنين المغناطيسى للقلب كتقنية مفيدة فى تقييم داء القلب الخلقى. ويزداد الاهتمام به يوماً بعد الآخر كفحص عام شامل فى تشخيص التقييم المورفولوجى والوظيفى قبل الجراحة، وأيضاً خلال متابعة ما بعد الجراحة لأمراض القلب الخلقية. أما من الناحية العملية، تتكون عملية التصوير بالرنين المغناطيسى على القلب فى حالات أمراض القلب الخلقية من عدة مكونات تشريحية ووظيفية أو فسيولوجية. ومن المتوقع مع هذا التطور المستمر فى تكنولوجيا الفحص التوسع فى استخدام تطبيقات التصوير بالرنين المغناطيسى، خاصة فى مجال متابعة المرضى الخاضعين لعمليات الإصلاح الجراحية.