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SUMMARY 

The measurement of radiation dose has become a science of ever increasing 

importance to the estimation of the risks and benefits inherent to the uses of exposure 

to ionizing radiation. From this point of view, a strong demand for dosimeters that can 

be easily hold with the persons everywhere (no need for high voltage or cables) or 

used in determination of therapeutic doses and have a wide useful absorbed dose 

range, small physical size and tissue equivalent. The thermoluminescent dosimeters 

TLDs can be requested for this demand. 

Improper use of a thermoluminescent material in a dosimetric application may 

lead to numerous errors in determined doses. To assess the radiation doses precisely, 

the sources of dose errors should be identified and minimized. All those sources of 

errors can be reduced or eliminated if appropriate procedures are followed. Typically, 

standard practice procedures for TL dosimetry involve pre-irradiation background 

(also known as “zero dose”) readings of TLDs especially at low dose levels, to be 

subtracted from readings of irradiated dosimeters. However, some experimentalists do 

skip this procedure at different circumstances: (1) if dosimeters are being irradiated to 

high doses compared to which background values could be neglected, (2)when high 

level of dosimetry with minimized uncertainties is not within the scope,(3) when 

dealing with large number of dosimeters, it was thought to be enough to select 

randomly few dosimeters for pre-irradiation background measurements instead of 

reading all dosimeters for saving time, and (4) when the glow curves are a subject of 

an analytical study regardless of doses delivered. 

We selected commonly used lithium fluoride (LiF) from the numerous 

available thermoluminescent materials. LiF as a TL dosimeter is known for its high 

sensitivity, stability, and approximate tissue equivalency. Since the discovery of its 

useful TLD properties at the University of Wisconsin, LiF was extensively studied 

and is now arguably the most extensively used reference thermoluminescent material 

in a wide spectrum of applications. Selecting specifically LiF dosimeters to evaluate 

the effect of pre-irradiation background measurements on the post-irradiation 

dosimeter readout values and the other heat treatment effect has made the results 

interesting to a wide audience. 
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For radiation dosimetry in radiotherapy, there is a need to measure the high 

dose/dose rate submitted to tumor volume at the same time there is a need to measure 

the low dose/dose rates reached the healthy tissues around the tumor. The dosimetry 

system used in the determination of therapeutic doses must be independent on the 

dose rate. The dosimetry system used in the determination of therapeutic doses must 

have linear dose response in wide range from few mGy or less to few Grays or more 

In this thesis, the results of the dosimetric properties such as the sensitivity, 

dose response and linearity range and dose rate dependence are represented and 

discussed. The effect of annealing, heat treatment pre-irradiation (zero dose) and the 

readout heating rate of the dosimeters are also represented and discussed. The 

application of the results in vitro measurements using the Rando phantom in different 

levels inside the head and comparing it with that from the treatment planning system 

are represented discussed and compared. 

The result confirm the importance of the sensitivity factor to be applied and 

corrected for before any comparison or even dealing with the obtained data. If there is 

a shift in the temperature at which the peaks, normalization of the peak positions are a 

must before calculating the average of different TLDs from the same type. 

The results also conclude that annealing regime plays an important role on the 

re-use of TLDs through cancelling the residual dose and to re-arrange the crystal 

structures in order to have the same previous response to radiation doses. The slow 

cooling is the best in devolvement of the glow peak as area under the curve and the 

resolution of the peaks. 

In the application of the TLDs in determination of the therapeutic doses, under 

estimated doses is achieved compared to the use of ionization chambers. 
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