PHYSIOLOGICAL STUDIES ON ADAPTATION OF ZEA MAIZE L.UNDER SALINE CONDITIONS AT SAHL ELTINA NORTH SINAI

By

HISHAM MOHAMED ALI EL-SHARKAWY

B.Sc. (Agronomy), Fac. Agric., Tanta Univ. (2002) M. Sc. (Agronomy), Fac. Agric., Cairo Univ. (2009)

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Degree of

in
Agricultural Sciences
(Plant Physiology)

Department of Agricultural Botany
Faculty of Agriculture
Ain Shams University

Approval Sheet

PHYSIOLOGICAL STUDIES ON ADAPTATION OF ZEA MAIZE L.UNDER SALINE CONDITIONS AT SAHL ELTINA NORTH SINAI

By

HISHAM MOHAMED ALI EL-SHARKAWY

B.Sc. (Agronomy), Fac. Agric., Tanta Univ. (2002) M. Sc. (Agronomy), Fac. Agric., Cairo Univ. (2009)

This thesis for doctor of philosophy degree has been approved by:

Dr.	Mohamed Khalil Khalil Prof. Emeritus of Plant Physiology, Faculty of Agriculture, Cairo University
Dr.	Ibrahim Seif El din Ibrahim Aly Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University
Dr.	Sayed Said Eisa Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University.
Dr.	Said Awad Shehata Prof. Emeritus of Plant Physiology, Faculty of Agriculture, Ain Shams University

Date of Examination: 1 /8 /2017

PHYSIOLOGICAL STUDIES ON ADAPTATION OF ZEA MAIZE L.UNDER SALINE CONDITIONS AT SAHL ELTINA NORTH SINAI

By

HISHAM MOHAMED ALI EL-SHARKAWY

B.Sc. (Agronomy), Fac. Agric., Tanta Univ. (2002) M. Sc. (Agronomy), Fac. Agric., Cairo Univ. (2009)

Under the supervision of:

Dr. Said Awad Shehata

Prof. Emeritus of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Sayed Said Eisa

Prof. of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University

Dr. Elhusseiny Tawfik Kishk

Researcher Prof. Emeritus of Adaptation and Plant Physiology, Genetic Resources Department, Desert Research Center.

ABSTRACT

Hisham Mohamed Ali Ahmed El-Sharkawy: Physiological Studies on Adaptation of Zea Maize L. under Saline Conditions at Sahl El Tina North Sinai. Unpublished Ph.D. thesis, Department of Agricultural Botany, Faculty of Agric, Ain Shams University, 2017.

This study was conducted to evaluate the effect of two planting dates and four foliar application treatments as well as five seed hardening methods on acclimation and improving growth, yield and its components, chemical composition as well as the physiological traits of corn plant grown under saline conditions.

Two successive experiments were conducted at Sahl El Tina, North Sinai in 2013 and 2014 summer seasons.

The first of April as a planting date treatment was better than 1st May for all growth traits, yield and its components, Chemical composition as well as the physiological traits of corn plant under saline soil during 2013 and 2014 summer seasons. TDZ at 2ppb as a foliar application produced the highest significant mean values for all growth traits, yield and its components, chemical composition as well as the physiological traits of corn in saline soil during both seasons. Meanwhile, KCl 2% was the second order for increasing growth traits, yield and its components of corn plant during both seasons. Concerning seed hardening treatments tack the same trend for increasing growth traits, yield and its components, chemical composition as well as the physiological parameters of Corn plant, with applied TDZ at 2 ppb and KCl 2% as a seed soaking treatments. Generally, seed hardening of grains by TDZ at 2ppb recorded the highest significant mean values for all growth traits and improved yield in saline soils. The first of April treatment combined with TDZ 2ppb as foliar application and seed soaking treatment were the best treatment in general for all growth traits, yield and its components, chemical composition as well as the physiological traits

under saline conditions. However, boron treatment gave lower values than TDZ at 2ppb and KCl at 2% of all treatments of foliar applications and seed hardening.

Key words: Zea mays, adaptation, saline condition, TDZ, boron, KCl.

ACKNOWLEDGMENT

Praise be Allah in the present life and at the here after i wish to express my sincere appreciation and gratitude to **Dr. Said Awad Shehata**, Professor of Physiology, Faculty of Agriculture, Ain Shams University., for suggesting the problem, supervision, inspiring help and constructive criticism throughout the course of this study.

I am greatly indebted to **Dr. Sayed Said Eisa** Professor of Physiology, Faculty of Agriculture, Ain Shams University for his help, continuous advice and encouragement.

I wish also to express my deepest thanks to **Dr. Elhusseiny Tawfik Kishk** Professor of plant Physiology, Plant Adaptation unit, Genetic Resources Dept. Desert Research center and **Dr. Hussein Said Khafagy**, adaptation unit – genetic resources department – Desert Research Center for suggesting the problem, helping in writing this thesis and continuous guidance.

Thanks are also extended to all members of Agriculture Botany, Faculty of Agriculture, Ain Shams University., for their valuable advice and their services during this study.

Finally, I would like to thank my father, mother, and my wife for their continuous encouragement, kind help and patience.

CONTENTS

	PAGES
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Effect of planting date	5
1.1. Growth parameters	5
1.2. Yield and its components	
1.3 Biochemical and physiological changes	10
2. Effect of seed soaking	12
2.1. Growth parameters	12
2.2. Yield and its components	18
2.3. Biochemical and physiological changes	22
3. Effect of foliar application	27
3.1. Growth traits	27
3.2. Yield and its components	31
3.3. Biochemical and physiological changes	33
MATERIAL AND METHODS	41
The main studied factors	42
A. Planting date	42
b. Seed Soaking	42
C. Foliar application treatments	43
Soil analyses	43
The studied growth characters	44
I. Growth parameters	44
II. Yield and yield components	44
III.Chemical analyses	45
IV. physiological changes	49
Statistical analysis	49
RESULTS AND DISCUSSION	50
Growth parameters	50

1. Effect of planting date	50
1-1.Plant height(cm)	50
1-2. Fresh and dry weights/ plant	
1-3. Leaf area (cm ²)	
1-4. 50% of Tasseling and silking	
2. Effect of seed soaking	55
2-1.Plant height	55
2-2. Fresh and dry weights/g/plant	
2-3. Leaf area	59
2-4. No. of days for 50% of tasseling and silking	
3. Effect of foliar application:	63
3-1. Plant height (cm)	
3-2. Fresh and dry weights/ g/plant	64
3-3. Leaf area (cm ²)	66
3-4. Silking 50% and tasseling 50%	68
4. Effect of interaction	70
4-1.Plant height	70
4-2. Fresh and Dry weight	71
4-3. Leaf area (cm ²)	73
4-4. No. of days for tasseling 50% and silking 50%	74
Yield and its components	77
1. Effect of planting date	77
1-1. Plant height	77
1-2. Ear length	78
1-3. Ear diameter	78
1-4. No.of rows/ear	79
1-5. No. of grains/ear weight	80
1-6. Grain weight /g/ear	81
1-7. 1000 grain weight	82
1-8. Shelling %	83
1-9. Grain yield kg/fed	84
2. Effect of seed soaking	85

2-1. Plant height	85	
2-2. Ear length	87	
2-3. Ear diameter		
2-4. No. of grains/ear	89	
2-5. No. of rows/ear		
2-6. Grain weight/ ear		
2-7. 1000 grain weight		
2-8. Shilling%		
2-9. Grain yield kg/fed		
3. Effect of foliar application		
3-1.Plant hight		
3-2. Ear length		
3-3. Ear diameter	98	
3-4. No. of rows/ear	100	
3-5. No. of grain /row	101	
3-6. Grain weight/g/ ear		
3-7. 1000 grain weight		
3-8. Shilling %		
3-9. Grain yield kg/fed		
4. Effect of interaction		
4-1.Plant height	107	
4-2. Ear length	108	
4-3. Ear diameter	111	
4-4. No. of rows/ear	112	
4-5. No. of grains /ear	114	
4-6. Grain weight/g/ ear	116	
4-7. 1000 grains weight	118	
4-8. Shelling%	119	
4-9. Grain yield kg/fed	121	
Biochemical composition and physiological changes	123	
1. Effect of planting date		
1-1. chlorophyll concentration	123	
1-2 T.S.S% for Leaves	124	

1-3. Transpiration rate mmol m- ² s ⁻¹	125
1-4. Proline (μmol/g FW)	
1.5. Protein%	
1.6. Total soluble carbohydrates %	
1.7. Nutrient elements	130
2. Effect of Seed soaking	133
2.1. Chlorophyll content	133
2.2. T.S.S% for leaves	
2.3. Transpiration rate mmol m- ² s ⁻¹	135
2.4. Proline (μmol/g FW)	136
2.5. Protien%	138
2.6.Total soluble Carbohydrates %	139
2.7. Nutrient elements	141
3. Effect of foliar application	147
3.1. Chlorophyll concentrationt	147
3.2. T.S.S% for leaves	148
3.3. Transpiration rate mmol m- ² s ⁻¹	149
3.4. Proline (µmol/g FW)	150
3.5. Protein%	152
3.6.Total soluble carbohydrates %	154
3.7. Nutrient elements	155
4. Effect of interaction	162
4.1. Chlorophyll concentration	162
4.2. T.S.S% for leaves	
4.3. Transpiration rate mmol m- ² s ⁻¹	165
4.4. Proline (μmol/g FW)	167
4.5. Protein%	169
4.6.Total carbohydrates%	170
4-7. Nutrient elements	171
SUMMARY	184
REFERENCES	192
ARABIC SUMMARY	••••

LIST OF TABLES

No.		Page
1	Soil and irrigation water analysis at the experimental site at	
	Sahl El-Tina, averaged over two seasons.	
	a) Soil mechanical analysis at two depths	
	b) Chemical analysis of soil (anions and cations in mg/L)	43
	c) Chemical analysis of irrigation water (Canal El-Salam)	43
2	Effect of planting date, foliar application, seed soaking and	
	their interactions on growth traits (plant height (cm)) of	
	maize plant at 60 DAP in 2013 and 2014 growing season	71
3	Effect of planting date, foliar application, seed soaking and	
	their interactions on growth traits (fresh and dry weights	
	(g/pl) of maize plant at 60 DAP in 2013 growing seasons	72
4	Effect of planting date, foliar application, seed soaking and	
	their interactions on growth traits (fresh and dry weights	
	(g/pl) of maize plant at 60 DAP in 2014 growing seasons	73
5	Effect of planting date, foliar application, seed soaking and	
	their interactions on growth traits (leaf area (cm2) of maize	
	plant at 60 DAP in 2013 and 2014 growing seasons	74
6	Effect of Planting date, foliar application, seed soaking and	
	their interactions on growth traits (no. of days 50%	
	tasseling and silking) of maize plant at 60 DAP in 2013	
	growing seasons	76
7	Effect of Planting date, foliar application, seed soaking and	
	their interactions on growth traits (no. of days 50%	
	tasseling and silking) of maize plant at 60 DAP in 2014	
	growing seasons	76
8	Effect of planting date, foliar application, seed soaking	
	and their interactions on plant height of maize plant at 110	
	DAP in 2013 and 2014 growing seasons	109
9	Effect of planting date, foliar application, seed soaking and	

	their interactions on ear length (cm) of maize plant at 110	
	DAP in 2013 and 2014 growing seasons	110
10	Effect of planting date, foliar application, seed soaking and	
	their interactions on ear diameter (cm) of maize plant at	
	110 DAP in 2013 and 2014 growing seasons	112
11	Effect of planting date, foliar application, seed soaking and	
	their interactions on no. of rows/ear of maize plant at 110	
	DAP in 2013 and 2014 growing seasons	114
12	Effect of planting date, foliar application, seed soaking and	
	their interactions on no. of grains/ear of maize plant at 110	
	DAP in 2013 and 2014growing seasons	115
13	Effect of planting date, foliar application, seed soaking and	
	their interactions on grain weight/g/ ear of maize plant at	
	110 DAP in 2013 and 2014 growing seasons	117
14	Effect of planting date, foliar application, seed soaking and	
	their interactions on 1000 grain weight (g) of maize plant	
	at 110 DAP in 2013 and 2014 growing seasons	119
15	Effect of planting date, foliar application, seed soaking and	
	their interactions on % shelling of maize plant at 110 DAP	
	in 2013 and 2014 growing seasons	121
16	Effect of planting date, foliar application, seed soaking and	
	their interactions on grain yield kg/fed of maize plant at	
	110 DAP in 2013 and 2014 growing seasons	123
17	Effect of Planting date, foliar application, seed soaking and	
	their interactions on chlorophyll (mg/100g) of maize at 60	
	DAP during 2013 and 2014 seasons	164
18	Effect of planting date, foliar application, seed soaking and	
	their interactions on TSS % in leaves of maize at 60 DAP	
	during 2013 and 2014 seasons	165
19	Effect of planting date, foliar application, seed soaking,	
	and their interactions on transpiration rate (mmol m ⁻² s ⁻¹ .) in	
	maize at 60 DAP during 2013 and 2014 seasons	167

20	Effect of planting date, foliar application, seed soaking and	
	their interactions on proline content (µmol/g FW) in leaves	
	of maize at 60 DAP during 2013 and 2014 seasons	168
21	Effect of planting date, foliar application, seed soaking and	
	their interactions on protein % in dry shoot of maize plant	
	at 60 DAP in 2013 and 2014 growing seasons	169
22	Effect of planting date, foliar application, seed soaking and	
	their interactions on total soluble carbohydrates % in dry	
	shoot of maize plant at 60 DAP in 2013 and 2014 growing	
	seasons	170
23	Effect of planting date, foliar application, seed soaking and	
	their interactions on potassium% in dry shoot of maize	
	plant at 60 DAP in 2013 and 2014 growing seasons	173
24	Effect of planting date, foliar application, seed soaking and	
	their interactions on Fe (mg/g) in dry shoot of maize plant	
	at 60 DAP in 2013 and 2014 growing seasons	174
25	Effect of planting date, foliar application, seed soaking and	
	their interactions on B (mg/g) in dry shoot of maize plant	
	at 60 DAP in 2013 and 2014 growing seasons	175
26	Effect of planting date, foliar application, seed soaking and	
	their interactions on Na% in dry shoot of maize plant at 60	
	DAP in 2013 and 2014 growing seasons	176
27	Effect of planting date, foliar application, seed soaking and	
	their interactions on Cl (mg/g) in dry shoot of maize plant	
	at 60 DAP in 2013 and 2014 growing seasons	177
28	Effect of planting date, foliar application, seed soaking and	
	their interactions on P% in dry shoot of maize plant at 60	
	DAP in 2013 and 2014 growing seasons	178
29	Effect of planting date, foliar application, seed soaking and	
	their interactions on Ca% in dry shoot of maize plant at 60	
	DAP in 2013 and 2014 growing seasons	179
30	Effect of planting date, foliar application, seed soaking and	

VIII

	their interactions on Mg% in dry shoot of maize plant at	
	60 DAP in 2013 and 2014 growing seasons	180
31	Effect of planting date, foliar application, seed soaking and	
	their interactions on Cu (mg/g) in dry shoot of maize	
	plant at 60 DAP in 2013 and 2014 growing seasons	181
32	Effect of planting date, foliar application, seed soaking and	
	their interactions on Mn (mg/g) in dry shoot of maize	
	plant at 60 DAP in 2013 and 2014 growing seasons	182
33	Effect of planting date, foliar application, seed soaking and	
	their interactions on Zn (mg/g) in dry shoot of maize plant	
	at 60 DAP in 2013 and 2014 growing seasons	183

LIST OF FIGURES

No.	Pa	ge
1	Effect of planting date on plant height (cm) of maize plant at 60	
	DAP in 2013 and 2014 growing seasons	50
2	Effect of planting date on fresh weight/g/ plant of maize plant at	
	60 DAP in 2013 growing season	51
3	Effect of planting date on dry weight/g/ plant of maize plant at	
	60 DAP in 2014 growing season	52
4	Effect of planting date on leaf area (cm ²) of maize plant at 60	
	DAP in 2013 and 2014 growing seasons	53
5	Effect of planting date on 50% tasseling and silking of maize	
	plant at 60 DAP in 2013 growing season	55
6	Effect of planting date on 50% tasseling and silking of maize	
	plant at 60 DAP in 2014 growing season	55
7	Effect of seed soaking by TDZ, B and KCl on plant height (cm)	
	of maize plant at 60 DAP in 2013 and 2014 growing	
	seasons	56
8	Effect of seed soaking by TDZ, B and KCl on fresh weight/g/	
	plant of maize plant at 60 DAP in 2013 growing season	58
9	Effect of seed soaking by TDZ, B and KCl on dry weight/g/	
	plant of maize plant at 60 DAP in 2014 growing season	59
10	Effect of seed soaking by TDZ, B and KCl on leaf area (cm ²) of	
	maize plant at 60 DAP 2013 and 2014 growing seasons	60
11	Effect of seed soaking by TDZ, B and KCl on 50% taslleing and	
	silking of maize plant at 60 DAP in 2013 growing season	62
12	Effect of seed soaking by TDZ, B and KCl on 50% taslleing and	
	silking of maize plant at 60 DAP in 2014 growing	
	season	62
13	Effect of foliar application by TDZ, B and KCl on plant height	
	(cm) of maize plant at 60 DAP in 2013 and 2014 growing	
	seasons	64