Role of Epidermal Growth Factor Receptor in Malignant Pleural Mesothelioma and its value for successful chemical pleurodesis

Thesis

Submitted for Partial Fulfillment of M.D Degree
In Chest Diseases & Tuberculosis

Presented By Yasmine Hamdy El-Hinnawy

M.B., B.Ch., (M.Sc), Faculty of medicine Cairo University)

Supervisors

Prof. Ahmed El-Hosainy Aly

Professor of Chest Diseases
Faculty of Medicine
Cairo University

Prof. Hossam Hosny Masoud

Professor of Chest Diseases
Faculty of Medicine
Cairo University

Prof. Samia Mohamed Gabal

Professor of Pathology
Faculty of Medicine
Cairo University

Dr. Sabah Ahmed Mohamed

Lecturer of Chest Diseases
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2013

دور مستقبلات معامل النمو القشر الجلدى في الميزوثليوما البلورية الخبيثة وقيمته في إنجاح الالحام الكيمائي للغشاء البلوري

رسالة حكتوراة توطئة للحصول على حرجة الحكتوراة في أمراض الصدر والتدرن

رساله مقدمه من الطبیبة/ یاسمین حمدی الحناوی (ماجستیر امراض الصدر و التدرن)

كلية الطب جــــامــعة القهـــاه ــــره

تحت اشراف

أ.د/ احمد الحسيني على

استناذ الامراض الصدرية كلية الطب جهامعة القهاه سره

أ.د / حسام حسنى مسعود

استاذ الامراض الصدرية كلية الطب جامعة القهاه سره

أ.د/ سامية محمد جبل

أستاذ الباثولوجيا كلية الطب جامعة القاء سره

د. صباح احمد محمد

مدرس الامراض الصدرية كلية الطب جـــامـعة القــاهـــره

كلية الطب جـــام-عة القــاهــره

List of Abbreviations

Ab	Antibody
AHNP	anti-p185 her2/neu peptidomimetic
AHNP-SA	anti-p185 her2/neu peptidomimetic - streptavidin
AR	Amphiregulin
ARF	Alternate open reading frame
ATP	Adenosine triphosphate
Bcl-xL	B-cell lymphoma-extra large
BTC	Betacellulin
CALGB	Cancer and Leukemia Group B
CD	Cluster differentiation
CDKN2A	Cyclin-dependent kinase 2A
CF	Cystic fibrosis
CK	Cytokeratin
Cl	Chloride
COPD	Chronic obstructive pulmonary disease
CT	Computed tomography
Da	Dalton
DNA	Deoxyribonucleic acid
ECM	Extracellular matrix
ECOG	Eastern Cooperative Oncology Group
EGF	Epidermal growth factor
EGFR	Epidermal growth factor receptor
EGFRvIII	epidermal growth factor receptor variant III
EMA	Epithelial Membrane antigen
EMT	Epithelial mesenchymal transition
EORTC	European Organization for Research and Treatment of
	Cancer
EPP	Extrapleural pneumonectomy
EPR	Epiregulin

Erb	erythroblastosis oncogene B
ERK	Extracellular signal-regulated kinases
Fab	Fragment antigen-binding
FAK	Focal Adhesion Kinase
FDA	U.S. Food and Drug Administration
Grb	Growth factor receptor-bound protein
Gy	Gray unit
HDM	House dust mite
Her	Human Epidermal Growth Factor Receptor
HB-EGF	Heparin-binding EGF-like growth factor
Ig	Immunoglobulin
IL	Interleukin
ILD	Interstitial lung disease
IMIG	International Mesothelioma Interest Group
IPF	Interstitial pulmonary fibrosis
IU	International Unit
Jak 2	Janus kinase 2
Jnk	Jun N-terminal kinases
K ⁺	Potassium ion
K-Da	Kilo dalton
LDH	Lactate dehydrogenase enzyme
mAb	Monoclonal Antibodies
MAP	Mitogen-activated protein
MAPK	Mitogen activated protein kinase
MIPC	Miliary intrapulmonary carcinomatosis
mm	millimeter
MMP	Matrix metalloproteinase
MPM	Malignant Pleural Mesothelioma
mRNA	Messenger ribonucleic acid
mTor	mammalian target of rapamycin
MUC5AC	Mucin 5AC
NF 2 gene	Neurofibromatosis type 2 gene

NF-KB	nuclear factor kappa-light-chain-enhancer of activated B cells
NRG	Neuregulin
NSCLC	Non small cell lung cancer
OS	overall survival
P-A	Postero-anterior
PAH	Pulmonary arterial hypertension
PCI	potato carboxypeptidase inhibitor
PDGF	Platelet derived growth factor
PI3K	Phospoinositide 3 kinase
PKB	Protein kinase B
PKC	Protein kinase C
PLC	Phospholipase C
PTEN	Phosphatase and tensin homolog
Raf	Rapidly Accelerated Fibrosarcoma.
RAS	Rat sarcoma
Rb	Retinoblastoma
RTKs	Receptor tyrosine kinases
ScFv	Single-chain variable fragment
SMRP	Serum Mesothelin–Related Protein
STAT	Signal transducer and activator of transcription
SV	Simian Virus
Tag	T antigen
TGF	Transforming growth factor
TKI	Tyrosine kinase inhibitor
TNF	Tumour necrosis factor
TRAIL	TNF-related apoptosis-inducing ligand
TS	Thymidilate synthase
TSG	Tumour suppressor gene
VATS	Video assisted thoracoscopic surgery
VEGF	Vascular endothelial growth factor
WBC	White blood cell count

WHO	World Health Organization
wt p53	wild-type p53 gene

List of Tables

Tables	Review	Pages
1	ECOG Performance status	20-21
Results		
1	Sex distribution among the study groups	67
2	Mean age of the study groups	68
3	Smoking prevalence among the study groups	69
4	Chemical analysis of the pleural fluid among study groups	70
5	The predominant cell pattern during pleural fluid cytological analysis among the study groups	71
6	Histopathological subtypes among Group I (Benign Pleural effusion) of the study population	72
7	Histopathological subtypes among Group III (Malignant pleural effusions other than mesothelioma) of the study population	73
8	Presence of mesothelial cells in the pleural biopsy specimens among the study groups	74
9	Immunohistochemical staining for detection of EGFRs in the pleural biopsy among study groups	76
10	Statistical Comparison between Group II & Group III of the Study Population as regard the Success Rate of Chemical Pleurodesis	78
11	Relationship between Sex distribution & Positivity of Immunohistochemical staining for EGFRs in group I of the study population	80
12	Mean age of the Positive cases in Immunohistochemical staining for EGFRs among group I of the study population	80
13	Relationship between Smoking prevalence & Positivity of Immunohistochemical staining for EGFRs in group I of the study population	81
14	Pleural fluid chemical analysis in Positive cases of Immunohistochemical staining for EGFRs in group I of the study population	82
15	Relationship between pleural fluid predominant cell pattern & Positivity of Immunohistochemical staining for EGFRs in group I of the study population	82
16	Relationship between Histopathological Subtypes in group I of the study population & Positivity of Immunohistochemical staining for EGFRs	83

17	Relationship between Sex distribution & Results of Immunohistochemical staining for EGFRs in group II of the study population	84
18	Relationship between age & results of immunostaining for EGFRs in group II of the study population	85
19	Relationship between Smoking Prevalence & Results of Immunohistochemical staining for EGFRs in group II of the study population	86
20	Relationship between pleural fluid chemical analysis & results of immunostaining for EGFRs in group II of the study population	87
21	Relationship between pleural fluid predominant cell pattern & results of Immunohistochemical staining for EGFRs in group II of the study population	88
22	Relationship between Success Rate of Chemical Pleurodesis & Results of Immunostaining for EGFRs in group II of the study population	89
23	Relationship between Sex distribution & Results of Immunohistochemical staining for EGFRs in group III of the study population	91
24	Relationship between age & results of immunostaining for EGFRs in group III of the study population	92
25	Relationship between Smoking prevalence & Results of Immunohistochemical staining for EGFRs in group III of the study population	93
26	Relationship between pleural fluid chemical analysis & results of immunostaining for EGFRs in group III of the study population:	94
27	Relationship between pleural fluid predominant cell pattern & results of Immunohistochemical staining for EGFRs in group III of the study population	95
28	Relationship between histopathological subtypes in group III of the study population & Results of Immunohistochemical staining for EGFRs	96
29	Relationship between Success Rate of Chemical Pleurodesis & Results of Immunostaining for EGFRs in group III of the study population	98

List of Figures

Figures	Review	Pages
1	Key Biologic Features of Malignant Mesothelioma.	11
2	Different CT Chest of mesothelioma	12
3	ErbB receptors and their ligands.	28
4	The diversity of the epidermal growth factor receptor signaling network	29
5	A schematic representation of the EGFR as a target for anti- cancer therapies	32
6	Mechanisms of action of ErbB receptors in tumor cells	41
7	Average protein expression of ErbB receptors and cognate ligands in lung carcinomas	43
8	The action site for EGFR inhibitors	47
9	Molecules in the ErbB signaling pathways as targets for cancer therapies	49
10	Inhibition of EGFR Signaling by Tyrosine Kinase Inhibitors and Mechanisms of Resistance	53
11	Medical Thoracoscope	60
12	True cut needle	63
Results		
1	Sex distribution among the study groups	68
2	Smoking prevalence among the study groups	69
3	Mean value of sugar in the study groups	70
4	The predominant cell pattern during pleural fluid cytological analysis among the study groups	72
5	Histopathological subtypes among Group I (Benign Pleural effusion) of the study population	73
6	Histopathological subtypes among Group III (Malignant pleural effusions other than mesothelioma) of the study population	74
7	Presence of mesothelial cells in the pleural biopsy specimens among the study groups	75
8	Immunohistochemical staining for detection of EGFRs in the pleural biopsy among study groups	77

9	Statistical Comparison of the Success Rate of Chemical Pleurodesis between Group II & Group III of the Study Population	79
10	Relationship between Sex distribution & Results of Immunohistochemical staining for EGFRs in group II of the study population	85
11	Relationship between Smoking prevalence & Results of Immunohistochemical staining for EGFRs in group II of the study population	86
12	Relationship between pleural fluid predominant cell pattern & results of Immunohistochemical staining for EGFRs in group II of the study population	89
13	Relationship between success rate of chemical pleurodesis & results of immunostaining for EGFRs in group II of the study population	90
14	Relationship between Sex distribution & Results of Immunohistochemical staining for EGFRs in group III of the study population	92
15	Relationship between Smoking prevalence & Results of Immunohistochemical staining for EGFRs in group III of the study population	94
16	Relationship between histopathological subtypes in group III of the study population & Results of Immunohistochemical staining for EGFRs	97
17	Relationship between success rate of chemical pleurodesis & results of immunostaining for EGFRs in group III of the study population	98
18	CXR of case 1	99
19	CT Chest mediastinal window of case 1	99
20	CT Chest mediastinal window of case 1	100
21	Thoracoscopic picture of Case	100
22	Epithelial type Mesotheliom of case 1(H&Ex200).	101
23	EGFR positive staining of case 1 (Immunoperoxidase, DAB x200)	101
24	CXR of case 2	102
25	CT Chest Coronal cuts of case 2	102

26	Thoracoscopic picture of Case 2	103
27	Mesothelioma epithelial type in Case 2 (H&E x200).	103
28	Higher power of the previous slide (H&Ex400).	104
29	The picture showing negative staining for EGFR. (Immunoperoxidase, DABx100).	104
30	CXR of case 3	105
31	CT Chest mediastinal window of case 3	105
32	CT Chest mediastinal window of case 3	106
33	CT Chest Lung window of case 3	106
34	Pleural metastatic adenocarcinoma. (H&E x100).	107
35	Case 3 is negatively EGFR stained.(Immunoperoxidase, DABx100)	107
36	CXR of case 4	108
37	CT Chest mediastinal window of case 4	108
38	Thoracoscopic picture of Case 4	109
39	Pleural metastatic papillary carcinoma. (H&E x 100)	109
40	The case 4 showed negative staining for EGFR. (Immunoperoxidase, DABx200).	110
41	CXR of case 5	111
42	CT Chest mediastinal window of case 5	111
43	CT Chest mediastinal window of case 5	112
44	CT Chest Lung window of case 5	112
45	Pleural lymphoma negative for EGFR. (Immunoperoxidase, DABx200).	113
46	CXR of case 6	114
47	CT Chest mediastinal window of case 6	114
48	CT Chest mediastinal window of case 6	115
49	CT Chest Lung window of case 6	115

50	Thoracoscopic picture of Case 6	116
51	Shedding of mesothelial cells in case of chronic pleural inflammation. (H&Ex200).	116
52	CXR of Case 7	117
53	CT Chest mediastinal window of case 7	117
54	CT Chest mediastinal window of case 7	118
55	Normal mesothelial cells in case of chronic pleural inflammation (H&Ex200).	118
56	Normal mesothelial cells in case of chronic pleurisy positive for EGFR. (Immunoperoxidase, DABx200).	119

List of Contents

	Pages
List Abbreviation	I
List of Tables	V
List of Figures	VII
Introduction	1
Review of Literature	
Chapter (1)	
Malignant Pleural Mesothelioma	3
Chapter (2)	
Epidermal Growth Factor and Receptor	25
Chapter (3)	
Epidermal Growth Factor Receptor and Respiratory diseases	33
Subjects & Methods	56
Results	66
Discussion	120
Summary & Conclusion	139
Recommendations	
References	
Arabic Summary	

Abstract

Background The most common primary malignant tumor of the pleura is malignant mesothelioma, it is a highly aggressive tumour that has become a very important issue over recent years. Inhalational exposure to asbestos has been clearly established as the predominant cause of malignant mesothelioma in humans. Approximately 70 percent of cases of pleural mesothelioma are associated with documented asbestos exposure. Evidence suggests that the EGFR is involved in the pathogenesis and progression of different carcinoma types. In vivo and in vitro studies have shown that these proteins are able to induce cell transformation.

Aim of work: is to study the role of epidermal growth factor receptor in malignant pleural mesothelioma and to evaluate its value for successful chemical pleurodesis.

Subjects and methods: The study included fifty three cases selected from the Chest department inpatient Kasr El-Aini Hospital. All patients were subjected to full history taking, clinical examination, CT Chest, pleural biopsy, histopathhological examination and immunostainning by EGFR Ab.

Results: There was no statistical significance regarding age, sex smoking in the comparison between the 3 groups of the study population. There was no statistical significance regarding pleural fluid total proteins and LDH but there was statistical significance regarding pleural fluid sugar level between group I and II. There was a statistical significance regarding predominant cell pattern of pleural fluid cytological analysis. There was a statistical significance regarding immunostaining for detection of EGFRs in the pleural biopsy among study groups (100% positive in group I, 73.7% positive in group II and 46.2 % positive in group III). There was no statistical significance regarding the comparison between success rate of chemical pleurodesis and expression of EGFR in immunostaining in malignant groups of pleural effusion.

Conclusion: There is evidence that epidermal growth factor receptor is frequently over-expressed in malignant pleural mesothelioma samples and therefore may be a potential therapeutic target as Targeted EGFR therapy has been successful in non-small cell lung cancer and in colorectal cancer.

Key words:

Malignant Pleural Mesothelioma, Epidermal growth factor receptor Chemical Pleurodesis.

Introduction

The most common primary malignant tumor of the pleura is malignant mesothelioma. It arises from mesothelial surfaces of the pleural and peritoneal cavities, as well as from the tunica vaginalis and pericardium. (*Sterman et al, 2008*)

Malignant pleural mesothelioma is a highly aggressive tumour that has become a very important issue over recent years. (*Scherpereel et al*, 2010).

Epidermal growth factor receptor exists on the cell surface and is activated by binding of its specific ligands, including epidermal growth factor and others. (*Yarden and Schlessinger*, 1987). The resulting signalling network initiates diverse cellular pathways leading to proliferation, migration, gene transcription, cell cycle progression and cell survival. (*Prenzel*, 2001).

Evidence suggests that the EGFR is involved in the pathogenesis and progression of different carcinoma types. In vivo and in vitro studies have shown that these proteins are able to induce cell transformation (*Normanno et al*, 2006).