RELATION BETWEEN HOMOCYSTEINE LEVEL IN BLOOD AND CAROTID INTIMA-MEDIA THICKNESS IN OBESE EGYPTIAN CHILDREN

THESIS

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Eman Ali Moustafa Hassan (M.B., B.Ch)

Under supervision of

Prof. Ghada Mohammad Anwar

Professor of pediatrics Faculty of Medicine Cairo University **Prof. Manal Essam Kandil**

Assistant Professor of pediatrics National Research Center Cairo

Dr. Neveen Mohammad Salama

Lecturer of pediatrics Faculty of Medicine Cairo University

Faculty of Medicine Cairo University 2009

<u>ABSTRACT</u>

Elevated homocysteine level is widely seen as an independent risk factor of cardiovascular disease in adults. In order to investigate the role of homocysteine in pediatric population at risk for early atherosclerosis, we studied serum homocysteine in obese children and non-obese controls. Case control study was conducted on 41 obese children comparing them with 41 healthy weight sex and age matched control group in The New Pediatric Hospital, Cairo University. Serum homocysteine level determined by ELIZA and related to carotid intima media thickness (CIMT) measured by a non invasive high resolution ultrasound and relation to other anthropometric parameters. Serum homocysteine and CIMT were all significantly elevated in obese children P value was <0.01 in both in comparison with controls. No correlation between homocysteine with CIMT and lipid profile and homocysteine correlates with BMI. There were positive significant correlation between CIMT and the anthropometric measurements including: weight, weight SDS, BMI, BMI SDS, waist circumference, hip circumference, W/H ratio, triceps SFT, triceps SFT SDS, subscapular SFT ,subscapular SFT SDS, SBP and DBP while there was no correlation between CIMT and the height. There were negative significant correlation between the CIMT and the HDL-c, but there were no significant correlation between the CIMT and total cholesterol, triglycerides and LDL-c. We concluded that serum homocysteine is elevated in obese children. Serum homocysteine level might be a characteristic for early atherosclerosis in obese children independent of other classic risk factors such as hypercholesterolemia, arterial hypertension and diabetes mellitus.

Obese children are at increased risk of having thickened CIMT, especially in relation to weight, skin fold thickness (SFT), waist circumference, hip circumference, BP and HDL-c.

Key Words: serum homocysteine - carotid intima media thickness - obesity – anthropometric measurements

<u>Acknowledgment</u>

First of all, ultimate thanks are to ALLAH. Without your power and mercy one could do nothing. Please help us to fulfill our greatest hope of gaining your acceptance.

Words will never express my deepest gratitude to all those who helped me during preparation of this study.

I gratefully acknowledge the sincere advices and guidance of Dr. Ghada Mohammad Anwar, Professor of Pediatrics, Faculty of medicine, Cairo University, for her constructive guidance, continuous support and thorough revision of this work till it reached this picture .I owe you the bulk of work you have offered me with a lot of patience and kindness; I shall always appreciate and remember your help.

I'm very grateful to **Dr. Manal Essam Kandil**, Assistant Professor of Pediatrics, the National Research Center, for his kind supervision, creative ideas and stimulating suggestions throughout this work. It is a great honor to work under his supervision.

My sincere appreciation and deep thanks goes to **Dr. Neveen**Mohammad Salama, Lecturer of Pediatrics, Faculty of medicine,
Cairo University, for her guidance, support and patience.

I would like to thank **Dr.Amany Abd El-Aziz Fatouh**,

Assistant Professor of Pediatrics, at the National Research Centre,

for his kind help, support and sincere encouragement.

I would like to express my deepest gratitude to **Dr. Eman Al- abd.** Consultant of Pediatrics, Faculty of medicine, Cairo University,
for her kindly help, keen supervision ,endless effort, I had with her
the honor and pleasure to proceed with this work.

I'm very grateful to **Dr**. **Aza Ahmed Ali Hassan**, Assistant Professor of chemical and clinical pathology, at the National Research Center for her kind cooperation in the practical part of this thesis, for her quidance, support and patience.

Nevertheless, I would like to thank all those who made this possible, from whom helped me in carrying out the investigation necessary for completion of this work as well as my friends and colleagues for their support and help when needed.

I am deeply thankful to the National Research Center for providing the laboratory facilities without which the work could not be accomplished.

And at last but not least, I want to mention my beloved ones nothing would describe my feelings towards you all, I would like to thank my husband for his support and help when needed, my father for being my guide, my mother and all my family members for believing in me and supporting me.

Eman Ali Moustafa

Contents

	<u>Page</u>
Abstract	
Content	i
List of Tables	i
List of Figures	i
List of Figures	•
List of Abbreviations	i
List of Errata	i
Introduction	1
Aim of the work	3
Review of Literature	4
Obesity	4
Homocysteine metabolism	41
Vascular dysfunction & obesity	52
Carotid intima- media thickness(CIMT)	58
Subjects and Methods	66
Results	83
Discussion	103
Conclusions and Recommendations	109
Summary	111
References	114
Arabic summary	

List of Tables

Table No.	Table Title		
1	Obesity Classification	5	
2	Inherited causes of obesity	17	
3	Drugs associated with weight gain	19	
4	Estimated value for percentile regression for all children and adolescents combined, according to sex.	28	
5	Age of obese and controls		
6	Sex distribution in both groups (obese and controls)		
7	Sex distribution in both groups (obese and controls) Descriptive characteristics of obese group		
8	Frequency of normal and abnormal blood pressure in obese group according to age and sex matched percentiles	85	
9	The pubertal stages in males among cases and controls	87	
10	The pubertal stages in females among cases and controls	87	
11	Anthropometric and clinical data in the obese and control groups	89	
12	Routine laboratory data of obese group	90	
13	Frequency of abnormal cholesterol, triglyceride, LDL-c and HDL-c in obese group	91	
14	Routine laboratory data of the obese and control groups	91	
15	Total serum homocysteine (tHcy) in both obese and control groups	92	
16	Total serum Total serum homocysteine (tHcy) in male and female in obese group	93	
17	Total serum Total serum homocysteine (tHcy) in male and female in control group	93	
18	Comparison between obese group with normal and abnormal homocysteine level in their clinical and laboratory data	94	
19	Comparison between control group with normal and abnormal homocysteine level in their clinical and laboratory data	95	
20	The carotid intima media thickness (CIMT) measurements in obese and control group	96	
21	CIMT measures among the females and males in obese group	96	
22	Frequency of normal and abnormal CIMT measures according to cut off point (0.72) in obese group	97	
23	Correlation between serum tHcy and W/H ratio, BMI, CIMT and lipid profile in studied groups	97	
24	Correlation between CIMT and anthropometric, clinical and laboratory data in studied groups	99	

List of Figures

Figure No.	Figure title	
1	Prevalence of overweight/obesity in boys and girls aged 6–18 years in developing countries.	10
2	BMI Growth Charts for Girls	24
3	BMI Growth Charts for Girls	25
4	Complications of obesity in children and adolescents	31
5	the current concept of the MS	
6	Pathways of methionine and homocysteime metabolism	
7	B-mode ultrasound digital image of the common carotid artery	65
8	Carotid intima-media thickness is measured from the blood-intima interface to the media-adventia interface .	65
9	weigh a child on electronic scale	
10	Measuring the height	68
11	BMI Growth Chart for boys	70
12	BMI Growth Chart for girls	71
13	The skin fold caliper	72
14	Landmark of triceps SFT	73
15	Pinch of triceps SFT	73
16	Landmark of sub scapular SFT	73
17	Pinch of subscapular SFT	74
18	Landmark of abdominal SFT	74
19	Pinch of abdominal SFT	74
20	Anthropometric measuring tape	75
21	Waist girth measurement	75

Figure No.	Figure title	
22	Hip girth measurement	76
23	CIMT in obese child	81
24	CIMT in control child	81
25	Sex distribution in obese group	83
26	Family history of obesity in obese group	85
27	Family history of CHD in obese group	86
28	Percentage of acanthosis nigricans in obese group	86
29	The pubertal stages in males among cases and controls	87
30	The pubertal stages in females among cases and controls	88
31	Comparison between mean fasting serum homocysteine levels in obese and control groups	92
32	Correlation between serum tHcy & BMI in studied groups	98
33	Correlation between CIMT & BMI in studied groups	100
34	Correlation between CIMT & weight in studied groups.	100
35	Correlation between CIMT & W/H ratio in studied groups	101
36	Correlation between CIMT & SBP in studied groups	101
37	Correlation between CIMT & DBP in studied groups.	102
38	Correlation between CIMT & HDL-c in studied groups	

List of Abbreviations

ARIC	Atherosclerosis Risk in Communities study		
ATP	Adult Treatment Panel		
BMI	Body mass index		
BMI SDS	body mass index standard deviation score		
BP	Blood pressure		
BW	Body weight		
Cbl	Cobalamin		
CBS	Cystathionine B synthase		
CCA	Common carotid artery		
CCR	Creatinine clrearance		
CDC	Centers for Disease Control and Prevention		
CHD	Coronary heart diseases		
CIMT	Carotid intima-media thickness		
CRP	C-reactive protein		
СТ	Computed tomography		
CV	Cardiovascular		
CVD	Cardiovascular disease		
Cysc.c	Cystatin c		
DEMPU	Diabetes Endocrine and Metabolism Paediatric Unit		
DEXA	Dual energy X-ray absorptiometry		
DM	Diabetes mellitus		
ELISA	European Lacidipine Study on Atherosclerosis		
FDA	Food and drug administration		
FFAs	Free fatty acids		
FMD	Flow-mediated dilatation		
GFR	Glomerular filteration rate		
Нсу	Homocysteine		
HDL	High density lipoprotein		
HDL-c	High density lipoprotein cholesterol		
ННсу	Hyperhomocysteinemia		

ICA	Internal carotid artery		
IL-6	interleukin-6		
IOTF	International Obesity Task Force		
LDL	Low density lipoprotein		
MCP	Macrophage chemo attractant protein		
MRI	Magnetic resonance imaging		
MS	Metabolic syndrome		
MTHFR	methylenetetrahydrofolate reductase		
NAFLD	Non-alcholic fatty liver disease		
NASH	Non-alcholic steatohepatitis		
NCEP	National Cholesterol Education Program		
NCHS	National Centre for Health Statistics		
NHANES	National Health and Nutrition Examination Survey		
NO	Nitric oxide		
NTDS	Neural tube defects		
OSA	Obstructive sleep apnea		
PBF	Percentage body fat		
PCOS	Polycystic ovary syndrome		
PKC	Protein kinase c		
SAH	S-adenosyl-homocysteine		
SAM	S-adenosyl-methionine		
SFT	Skin fold thickness		
T2DM	Type 2 diabetes mellitus		
TC	Total cholesterol		
TG	Triglycerides		
tHcy	Total homocysteine		
TNF	Tumor necrotic factor		
TSH	thyroid stimulating hormone		
US	United States		
WHO	World Health Organization		

List of Errata

Page	Line	Wrong	Correct
29	25	learns	lean
37	7	inhabit	inhibit
40	2	need need	need
43	1	homocystein	homocysteine
44	23	midly	mildly
45	13	absirotion	absorption
48	17	avid	acid
49	17	diseas	aisease
92	3	Umol/ml	Umol/I

Introduction Aim of the work.

INTRODUCTION

Over the past 20 years, obesity has become a worldwide concern of frightening proportion. The World Health Organization (WHO) estimates that there are over 400 million obese and over 1.6 billion overweight adults, a figure which will be projected to almost double by 2015. This is not a disease restricted to adults, at least 20 million children under the age of 5 years were overweight in 2005 (**Drew et al., 2007**).

Overweight and obesity in children are associated with complex metabolic changes and a low-grade inflammatory response, and thus might not only accelerate cardiovascular disease later on but may be also associated with the initiation of atherosclerosis in early life (Nagel et al., 2008).

Hyperhomocysteinemia is now regarded as an independent risk factor for atherothrombotic and thromboembolic vascular disease (Shai et al, .2004). Elevated homocysteine (tHcy) levels occur in a large proportion of patients with coronary artery disease, the exact mechanism by which higher Homocysteine levels may translate into increased coronary heart disease remains speculative, there are several plausible mechanisms including endothelial dysfunction, impaired flow mediated vasodilatation, increased proliferation of vascular smooth muscle cells, enhanced coagulability and inflammatory effects; the mechanism of Homocysteine angiotoxicity seems to involve nitric oxide system by inducing oxidant stress (Rosario et al, .2006).

The precursor of atherosclerosis disease is impairment of endothelial function which associated very strongly with obesity (**Phillips et al., 2008**).

Endothelial dysfunction can be estimated by measuring flow-mediated vasodilation (FMD), brachial-ankle pulse wave velocity (baPWV) and carotid intima-media thickness (CIMT) (**Tsuchiya et al., 2007**).

High resolution B-mode ultrasound measurements of the carotid intimamedia thickness (IMT) is a feasible, direct and non-invasive method able to evaluate and to detect preclinical lesions of arterial wall, represented by the American Heart Association (AHA) stage Π lesions (Cosimo et al., 2008).

Atherosclerosis can be now evaluated routinely by CIMT (**Tsushima et al., 2008**).

Homocysteine level might be a characteristic for early atherosclerosis in obese children independent of other classic risk factors such as hypercholesterolemia, arterial hypertension and diabetes mellitus (**Atabek et al., 2007**).

Early atherosclerotic changes may still be reversible, as suggested by a reduction in carotid IMT observed in obese children over a 6-week period of diet and physical exercise (Weihua et al., 2005).

AIM OF THE WORK

To assess the fasting serum homocysteine level and carotid intima-media thickness in obese children and analyze the relation between intima-media thickness and serum homocysteine level and other anthropometric parameters and to know if homocysteine could be a predictor factor for cardiovascular complications in obese children.