A Cytokine Profile in Response to Stimulation of Peripheral Blood Mononuclear Cells by HCV C200

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

By

Anwar Hassan Elsayed

M.B., B.Ch. Zagazig University

Under Supervision of

Prof. / Mona Mohamed Rafik

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Prof./ Shahera Fathy El Fedawy

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr./ Khaled Omar Abdallah

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

لمحة عن استجابة المؤثرات الخلوية بعد تحفيز الخلايا الطرفية وحيدة النواة باستخدام ببتيد سي 200 الخاص بالالتهاب الكبدى الفيروسى سى

رسالة

توطئة للحصول على درجة الماجستير في الباثولوجيا الإكلينيكية والكيميائية

مقدمة من

الطبيبة/أنوار حسن السيد بكالوريوس الطب والجراحة جامعة الزقازيق

تحت إشراف

ا د امنے محمد رفیق

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

اد/ شهيرة فتحى الفداوي

أستاذ الباثولوجيا الإكلينيكية والكيميائية كلية الطب - جامعة عين شمس

د/خالد عمر عبد الله

أستاذ مساعد الباثولوجيا الإكلينيكية والكيميائية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2011

contents

Introduction	1
Aim of the work	4
Review of literature	5
Subjects and Methods	74
Results	85
Discussion	106
Conclusion and Recommendations	116
Summary	117
References	121
Arabic summary	

List of Tables

Page

Table (1):	Descriptive Statistics: medians and percentiles of each cytokine in three groups Error! Bookmark not defined.			
Table (2):	Comparison between the cytokine levels in the studied groups (+ve P.I HCWs, -ve P.I HCWs & Chronic HCV HCWs) Error! Bookmark not defined.			
Table (3):	Comparison between the cytokine levels in chronic HCV HCWs and -ve P.I HCWs: Error! Bookmark not defined.			
Table (4):	Comparison between the cytokine levels in chronic HCV HCWs and +ve P.I HCWs: Error! Bookmark not defined.			
Table (5):	Comparison between the levels of cytokines in +ve and -ve P.I HCWs Error! Bookmark not defined.			
Table (6):	Correlation between levels of cytokines and cellular CD markers among +ve P.I HCWs: Error! Bookmark not defined.			
Table (7):	Correlation between levels of cytokines and cellular CD markers among -ve P.I HCWs:Error! Bookmark not defined.			
Table (8):	Correlation between levels of cytokines and cellular CD markers among Chronic HCV HCWs: Error! Bookmark not defined.			
Table (9):	Correlation between different cytokines within individual groups: Error! Bookmark not defined.			

List of Figures

		Page			
Fig. (1):	Structure of Hepatitis C Virus Error! Bookmark not defined.				
Fig. (2):	The HCV genome and gene products Error! Bookmark not defined.				
Fig. (3):	Circulating HCV particles can be associated with low- and very-low-density lipoproteins Error! Bookmark not defined.				
Fig. (4):	Life cycle of hepatitis C virus Error! Bookmark not defined.				
Fig. (5):	Global Prevalence of Hepatitis C Virus Error! Bookmark not defined.				
Fig. (6):	Sources of Infection for Persons with Hepatitis C in USA Error! Bookmark not defined.				
Fig. (7):	Geographic distribution of hepatitis C viral species Error! Bookmark not defined.				
Fig. (8):	HCV attenuates innate immune response Error! Bookmark not defined.				
Fig. (9):	Secretion of IFN by pDCs after contact with HCV-infected hepatocytes Error! Bookmark not defined.				
Fig. (10):	Crosstalk between NK cells and dendritic cells Error! Bookmark not defined.				
Fig. (11):	Principle of the assay Error! Bookmark not defined.				
Fig. (12):	Materials provided Error! Bookmark not defined.				
Fig. (13):	Comparison between the cytokine levels in the studied groups				

- **Fig. (14):** Regression analysis showing the correlation between IFN-Gama and CD3-_CD8+ among +ve P.I HCWs group**Error! Bookmark not defined.**
- **Fig. (15):** Regression analysis showing the correlation between IFN-Gama and CD3-CD8- among +ve P.I HCWs group**Error! Bookmark not defined.**
- **Fig. (16):** Regression analysis showing the correlation between IFN-Gama and CD3+CD8- among +ve P.I HCWs group**Error! Bookmark not defined.**
- Fig. (17): Regression analysis showing the correlation between IL-2 and CD3- CD8- among +ve P.I HCWs group...... Error!

 Bookmark not defined.
- **Fig. (18):** Regression analysis showing the correlation between IL-2 and CD3+CD8- among +ve P.I HCWs group...... **Error! Bookmark not defined.**
- **Fig. (19):** Regression analysis showing the correlation between IL-2 and CD3-CD8+ among +ve P.I HCWs group.......Error! **Bookmark not defined.**
- **Fig. (20):** Regression analysis showing the correlation between TNF-Alfa and CD3-_CD8+ among +ve P.I HCWs group**Error! Bookmark not defined.**
- **Fig. (21):** Regression analysis showing the correlation between TNF-Alfa and CD3+CD8+ among +ve P.I HCWs group **Error! Bookmark not defined.**
- **Fig. (22):** Regression analysis showing the correlation between TNF-Alfa and CD3+_CD8- among +ve P.I HCWs group**Error! Bookmark not defined.**
- Fig. (23): Regression analysis showing the correlation between TNF-Alfa and CD3+_CD8+ among -ve P.I HCWs groupError!

 Bookmark not defined.
- **Fig. (24):** Regression analysis showing the correlation between TNF-Alfa and CD3+_CD8- among -ve P.I HCWs group **Error! Bookmark not defined.**

- **Fig. (25):** Regression analysis showing the correlation between IFN-Gama and CD3+_CD8- among chronic group...... **Error! Bookmark not defined.**
- **Fig. (26):** Regression analysis showing the correlation between IFN-Gama and IL-2 among +P.I HCWs group**Error! Bookmark not defined.**
- **Fig. (27):** Regression analysis showing the correlation between IFN-Gama and TNF_Alfa among +ve P.I HCWs group **Error! Bookmark not defined.**
- **Fig. (28):** Regression analysis showing the correlation between IL-2 and TNF_Alfa among +ve P.I HCWs group......**Error! Bookmark not defined.**
- Fig. (29): Regression analysis showing the correlation between IL-2 and TNF_Alfa among -ve P.I HCWs group......Error!

 Bookmark not defined.
- Fig. (30): Regression analysis showing the correlation between IL-2 and IFN-Gama among -ve P.I HCWs group......Error!

 Bookmark not defined.

List of Abbreviations

aa : amino acidAg : Antigen

ALT : Alanine aminotransferase
APCs : Antigen presenting cells
ARF : Alternate reading frame

ARFP : Alternate Reading Frame Protein

AST : Aspartate transaminase

bDNA : Branched DNA

CD : Cluster of differentiation

CDC : Centers for disease control and prevention

CFSE : Carboxyfluorescein diacetate succinimidyl ester

CMI : Cell mediated immunity
CTL : cytotoxic T lymphocytes

D : Domain

DCs : Dendritic Cells

DNA : deoxyribonucleic acid
 dsRNA : Double stranded RNA
 E : Envelope glycoprotein
 EIA : Enzyme immunoassay

ELISA : Enzyme-Linked Immunosorbent Assay

ELISPOT : Enzyme-linked immunospot

ER : Endoplasmic reticulum

F : Frameshift

HCC : Hepatocellular carcinoma

HCV : Hepatitis C VirusHCWs : Health care workers

HLA : Human leukocyte antigens

HS : Highly Significant
HVR : Hypervariable region
IFNI : Type I interferon
IFN-α : Interferon alpha
IFN-β : Interferon beta
IFN-γ : Interferon-gamma

IgG : Immunoglobulin G

IKK : Inhibitor of kB kinase

IL-2 : Interleukine-2 IL-2R : IL-2 receptors

IPS-1 : IFN- β promoter stimulator protein 1

IRES : Internal ribosomal entry siteIRF : Interferon regulatory factor

ISDR : IFN- α sensitivity determining region

ISGF : IFN stimulated gene factor
ISGs : Interferone stimulation genes

ISREs : IFN-stimulated response elements

JAK : Janus tyrosine kinase

KIR : Killer inhibitory receptors

LFTs : Liver Function Tests

MDCs : Myeloid DCs

MHC : Major histocompatibility complexMICA/B : MHC class-I related chain A/B

NK : Natural killer cells
NKT : Natural killer T cells

NS : Non Significant

NS proteins : non structural proteins

NTPase : Nucleoside triphosphatase activities,
PBMCs : Peripheral blood mononuclear cells

PCR : Polymerase chain reaction

PD-1 : Programmed death 1
PDCs : Plasmacytoid DCs

PD-L: programmed death ligand

PI : Proliferation index

PIAS : Protein inhibitor of activated STAT1
PKR : dsRNA-dependent Protein Kinase R

PP2A : Protein phosphatase 2A

QPCR : Quantitative PCR

RdRp : RNA-dependent RNA polymerase

RFU : relative fluorescence units

RIBA : Recombinant immunoblot assay
RIG-I : Retinoic acid—inducible gene I

RNA : Ribonucleic acid

RT : Reverse Transcriptase

S : Significant
Sig : Significant

SOCS : Suppressor of cytokine signaling

SP : Signal peptidase

SPSS : Statistical Package for Social Sciences

SR-BI : Scavenger receptor B type I

STAT : Signal transducer and activator of transcription

T regs : Regulatory T cells

TBK1 : TNF receptor— associated factor family member—associated NF-κB

activator-binding kinase-1

TCR : T cell receptor
Th cells : T helper cells
TLR : Toll like receptor

TMA : Transcription mediated amplification

TMD : Transmembrane domain
TNF-α : Tumor necrosis factor-alfa

TRIF : Toll–IL-1 receptor domain–containing adaptor inducing IFN-β

NF-κB nuclear factor kappa B

TYK2 : Tyrosine kinase 2
UTR : Untranslated regions

γGT : Gamma Glutamyl Transferase
 2'-5' OAS : 2'-5'Oligoadenylate synthetase
 5-PL : Five-Parameter Logistic curve

Introduction

Hepatitis C virus (HCV) infection has become a global health problem with around 170–190 million infected people worldwide (*Berenguer*, 2007).

Spontaneous viral clearance of HCV is observed in only 15–40% of patients with acute hepatitis whereas, persistent infection is established despite evidence of immune regulation and is associated with progression to cirrhosis and hepatocellular Carcinoma (*Shiffman*, 2003).

Hepatitis C virus has structural proteins like core protein and envelope glycoproteins E1 and E2, which mediate entry into cell by binding to CD81 as well as the (NS) proteins, non-structural which have essential functions in viral replication. NS3 contains protease, RNA helicase and nucleoside triphosphatase (NTPase) activities, all of which are essential to viral replication. NS4A acts as cofactor for N3 protease activity. NS4B has a role in the formation of HCV RNA replication complex (Inoue et al., 2007).

Strong and persistent cell mediated immune responses have been reported in HCV seronegative individuals with documented exposure to HCV in the absence of detectable viral *RNA* (*Post et al.*, *2004*).

HCV-specific CD4⁺T cell responses persist in acutely infected individuals who permanently cleared the virus, and disappear in patients whose viraemia subsequently recurred (*Chang et al.*, 2001).

limited All patients with self disease had significant CD4₊ T-cell proliferation **HCV** specific C200 peptide, running parallel with the antigenstimulated secretion of IL-2 and IFN- y but not with IL-4 and IL-10, indicating predominant Th1 response (Semmo and Klenerman, 2007).

HCV-specific CD8⁺T cell responses that are associated with spontaneous viral clearance tend to be multi-specific and polyclonal (*Lauer et al.*, 2005).

Because of the high variability of HCV, escape mutations in CD8⁺T cell epitopes are common and they are expected to play a major role in chronic viral persistence (*Ray et al.*, 2005).

HCV-specific CD8⁺T cells have both cytolytic and non cytolytic effector function. The non cytolytic function is mediated by production of Interferone gamma (*Guidotti et al.*, 2001).

The imbalance between T helper cell Th1 (IL-2, IL-12, IFN- γ) cytokines and Th2 (IL-10) cytokines affect the outcome of HCV infection. The defect in both IL-12 and IFN- γ production may contribute to persistence of HCV infection (*Sarih et al.*, 2000).

IL-2 was capable of both pushing semi-effector CTL to complete its effector cell program and restoring the HCV coredependent inhibitory effect (*Accapezzato et al.*, 2004).

TNF- α triggers a partially overlapping set of antiviral defense mechanisms and serum level of TNF- α reflects the progression of inflammation (*Akyűz et al.*, 2005).

Interferon- gamma (IFN- γ) is a key cytokine and can inhibit HCV replication (*Lanford et al.*, 2003).

Aim of the work

The aim of the work is to detect a panel of cytokines IL2, IFN- γ and TNF- α of cell culture supernatant from unstimulated and stimulated peripheral mononuclear cells (PBMCs) by HCV specific C200 peptide.