EFFECT OF SOME TREATMENTS ON THE TOLERANCE OF SNAP BEAN PLANTS TO EARLY PLANTING DATES

By NABILA ABDEL-BASSET EWAIS

B.Sc. Cooperative Agric. Sc., Higher Institute of Agric. Cooperation, 1993M. Sc. Agric. Sc. (Agricultural Chemistry), Zagazig University, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME TREATMENTS ON THE TOLERANCE OF SNAP BEAN PLANTS TO EARLY PLANTING DATES

By NABILA ABDEL-BASSET EWAIS

B.Sc. Cooperative Agric. Sc., Higher Institute of Agric. Cooperation, 1993M. Sc. Agric. Sc. (Agricultural Chemistry), Zagazig University, 2003

This thesis for Ph.D. degree has been approved by: Dr. Fathy Abo El-Nasr Abo-Sdera Prof. of Vegetable Crops, Faculty of Agriculture, Moshtoher, Benha University Dr. Mohamed Emam Ragab Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University Dr. Mohamed Mohamed Soliman Associate Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University Dr. Ibrahim Ibrahim El-Oksh Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University

Date of Examination: 21 / 3 /2010

EFFECT OF SOME TREATMENTS ON THE TOLERANCE OF SNAP BEAN PLANTS TO EARLY PLANTING DATES

By NABILA ABDEL-BASSET EWAIS

B.Sc. Cooperative Agric. Sc., Higher Institute of Agric. Cooperation, 1993M. Sc. Agric. Sc. (Agricultural Chemistry), Zagazig University, 2003

Under the supervision of:

Dr. Ibrahim El-Oksh

Prof. Emeritus of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohammed Mohammed Soliman

Associate Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University

Dr. Samira Mahmoud El-Gizy

Head of Research Emeritus of Vegetable Crops, Horticulture Research Institute, Agricultural Research Center

ABSTRACT

Nabila Abdel-Basset Ewais: Effect of Some Treatments on the Tolerance of Snap Bean Plants to Early Planting Dates. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain shams University, 2010.

The field experiment was conducted within the two successive growing season of 2005 and 2006 to study the effect of early sowing dates (15 and 30th of Jan) compared with 15th of Feb., and some treatments i.e., seed soaking in PEG, vit. C, yeast, tap water and foliar spray with yeast and amino acids. The results revealed that snap bean plant vegetative growth, i.e., plant length, fresh weigh, dry matter and leaf area, recorded significantly the highest values at the third date. But numbers of leaves per plant were the highest at second date. With respect of seed soaking and plant spraying treatments, all the previously mentioned parameters of plant vegetative growth recorded the highest values by soaking seeds in tap water, PEG and yeast treatments compared with the control. Also foliar spray by yeast increased plant length, and amino acid treatments significantly increased dry matter percent and leaf area. The best early, total and export able yield were obtained at the third sowing date. Spraying the plants with amino acids with or without seed soaking in PEG were the best treatments for increasing total and exportable yields. In addition, the first and second sowing dates positively increased most of chemical composition (chlorophyll, N, P and protein in leaf). Soaking seeds in PEG and vit. C increased all chemical composition. Also foliar spray treatments had a significant effect on chemical composition in leaves and pods.

Key words:

Snap bean, seed priming, PEG, yeast, ascorbic acid and amino acids.

ACKNOWLEDGEMENT

First of all and for most I would like to express my deepest thanks to may God "ALLAH" who help me and gave me time, patience and power to complete this work.

I would like to express my sincere thanks and appreciations to **Dr. Ibrahim El- Oksh**, Prof. of vegetable crops, Horticulture Department, Faculty of Agriculture, Ain Shams Univ. for his supervision, Kind guidance, positive criticism and reviewing this manuscript.

Thanks are also extended to **Dr. Mohamed Soliman** Associate Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams Univ. for his supervision, valuable guidance, continuous advice and help during the course of this work.

I would like to express my deepest gratitude to **Dr. Samira Mahmoud El-Gizy**, Prof. of vegetable crops, Horticulture Research
Institute, Agriculture Research Center, for her supervision, continuous
advice and help during preparation and finishing of this work.

Sincere thanks are expressed to my friends for their help and support during this work.

Finally I would like to express my deep thanks to my mother, brothers and my husband for their help and continuous encouragement during my studies.

CONTENTS

1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2-1	Vegetative growth characteristics	3
2-1-1	Sowing dates	3
2-1-2	Seed soaking	3
2-1-3	Foliar spray treatments	5
2-2	Chemical composition	6
2-2-1	Sowing dates	6
2-2-2	Seed soaking	6
2-2-3	Foliar spray treatments	6
2-3	Yield and its components	8
2-3-1	Sowing dates	8
2-3-2	Seed soaking	8
2-3-3	Foliar spray treatments	9
3	MATERIAL AND METHODS	11
4	RESULTS AND DISCUTION	17
4-1	Plants vegetative growth	17
4-1-1	Plant height	17
4-1-2	Number of leaves per plant	19
4-1-3	Leaf area	21
4-1-4	Plant fresh weight	23
4-1-5	Dry matter percentage	25
4-2	Chemical composition in leaves	28
4-2 4-2-1	Chemical composition in leaves	28 28
	Total chlorophyll (SPAD)	28 28 28
4-2-1	Total chlorophyll (SPAD)	28
4-2-1 4-2-2	Total chlorophyll (SPAD)	28 28
4-2-1 4-2-2 4-2-3	Total chlorophyll (SPAD)	28 28 31
4-2-1 4-2-2 4-2-3 4-2-4	Total chlorophyll (SPAD)	28 28 31 34

4-3	Yield and its components	40
4-3-1	Average green pod weight	40
4-3-2	Green pod thickness	42
4-3-3	Green pod length	44
4-3-4	Early yield	46
4-3-5	Total yield	49
4-3-6	Exportable yield	51
4-4	Chemical composition in pods	54
4-4-1	Protein percentage	54
4-4-2	Fiber percentage	56
4-4-3	Total soluble sugars	58
5	SUMMARY	60
_		
6	REFERENCES	63
6	REFERENCES	63

LIST OF TABLE

Average maximum and minimum temperatures (C) in	
Kalubia during winter and spring seasons of 2005 and 2006.	11
The chemical analysis of baker's yeast	12
Effect of some soaking and spraying treatments at early sowing dates on plant height (cm) on snap bean plants in 2005 and 2006 seasons	18
Effect of some soaking and spraying treatments at early sowing dates on number of leaves on snap bean plants in 2005 and 2006 seasons	20
Effect of some soaking and spraying treatments at early sowing dates on leaf area (cm ²) on snap bean plants in 2005 and 2006 seasons	24
Effect of some soaking and spraying treatments at early sowing dates on fresh weight (gm) on snap bean plants in 2005 and 2006 seasons	26
Effect of some soaking and spraying treatments at early sowing dates on dry matter percentage on snap bean plants in 2005 and 2006 seasons	29
Effect of some soaking and spraying treatments at early sowing dates on Total chlorophyll (SPAD) on snap bean leaves in 2005 and 2006 seasons	30
Effect of some soaking and spraying treatments at early sowing dates on nitrogen percentage on snap bean leaves in 2005 and 2006 seasons	32
Effect of some soaking and spraying treatments at early	
sowing dates on phosphorus percentage on snap bean leaves in 2005 and 2006 seasons	33
Effect of some soaking and spraying treatments at early sowing dates on potassium percentage on snap bean leaves in 2005 and 2006 seasons	35
icaves iii 2003 aiiu 2000 seasoiis	33

sowing dates on carbohydrate percentage on snap bean leaves in 2005 and 2006 seasons	36
Effect of some soaking and spraying treatments at early sowing dates on Total phenolic compounds percentage on snap bean leaves in 2005 and 2006 seasons	37
Effect of some soaking and spraying treatments at early sowing dates on Total free amino acids percentage on snap bean leaves in 2005 and 2006 seasons	39
Effect of some soaking and spraying treatment at early sowing dates on average green pod weight on snap bean plants in 2005 and 2006 seasons	41
Effect of some soaking and spraying treatment at early sowing dates on green pod thickness on snap bean plants in 2005 and 2006 seasons	43
Effect of some soaking and spraying treatment at early sowing dates on green pod length on snap bean plants in 2005 and 2006 seasons	45
Effect of some soaking and spraying treatment at early sowing dates on early yield on snap bean plants in 2005 and 2006 seasons	47
The combined analysis of early yield (ton/fed) of snap bean plants in 2005 and 2006 seasons	48
Effect of some soaking and spraying treatments at early sowing dates on Total yield (ton/fed.) on snap bean plants, in 2005 and 2006 seasons.	50
Effect of some soaking and spraying treatments at early sowing dates on exportable yield (ton/fed.) on snap bean plants, in 2005 and 2006 seasons	52
Effect of some soaking and spraying treatments at early sowing dates on exportable yield percentage on snap bean plants, in 2005 and 2006 seasons	53

Effect of some soaking and spraying treatments at early sowing dates on protein percentage on snap bean	55
pods in 2005 and 2006 seasons	55
Effect of some soaking and spraying treatments at early sowing dates on fiber percentage on snap bean pods in 2005 and 2006 seasons.	57
III 2003 and 2000 seasons	31
Effect of some soaking and spraying treatments at early sowing dates on Total soluble sugars percentage on	
snap bean pods in 2005 and 2006 seasons	59

1- INTRODUCTION

Green bean (*Phaseolus vulgaris* L.) is one of the popular and important vegetable crops for human nutrition as a source of proteins, fibres, vitamins and minerals. In addition, it is one of the most important vegetable crops for local market and export.

Bean cultivated area in the year 2009 was 70516 Faddan for green pod production yielded 341321 tons with an average of 5 ton/fed. The exported yield amounted to 28348 tons.

Recently, great attention has been focused on early production from green pod yield to export it in early time as much as we can. For that, it is important to study the possibility of early production in the open field with cheap cost by using some treatments, i.e., yeast, amino acids, Vitamin ascorbic acid and PEG (polyethylene glycol) in order to improve seed germination, plant growth and green pod yield.

The yeast contain sugars, proteins, amino acids, some vitamins and source of cytokinin which have stimulatory effects on cell division and enlargement and nucleic acid synthesis and chlorophyll formation.

The amino acids are important for stimulation of cell growth and source of carbon and energy. Also these compounds function in the synthesis of other organic compounds such as protein, vitamins and enzymes.

Ascorbic acid is required in plants in trace amount to maintain normal growth. Functions of it are the reversal of stress effects such as temperature stress.

The PEG compounds have bean used to increase germination percentage, reduces germination time and improve uniformity of germination especially under any stress, i.e., low temperature, high temperature, drought and saline condition*.

_

^{*} Department of Agricultural Statistics, Ministry of Agriculture and Land Reclamation, Egypt 2009.

The aim of this work was, therefore, to find out the response of snap bean plants to some seed soaking and plant spraying treatments at the early sowing dates.

2- REVIEW OF LITERATURE

2-1- Vegetative growth:

2-1-1- Sowing dates:

Singer *et al.* (1996) pointed that the third sowing date (29th of Feb.) showed the highest plant height, number of leaves, fresh and dry weight percentage of snap bean compared with other dates (9th, 19th of Feb.)

Amer, A. (2004) noted that the vegetative growth of snap bean was clearly affected by sowing dates and the highest values of dry weight per plant were recorded by sowing on 10th of Oct. and 7th of Feb. compared to those of November, December and January. Helal (2006a) showed that sowing snap bean on 1st of Feb. significantly increased plant height, branches number and dry weight of plant compared to those sown in September and April.

2-1-2- Seed soaking:

Brocklehurst *et al.* (1984) found that the priming of leek (*Alium porrum L.*) seeds in polyethyone glycol (PEG) (6000) significantly improved rate and uniformity of seed germination, earlier seedling emergence and gave higher mean plant weight. **Bradford** (1986) mentioned that the lettuce seed priming in an aerated PEG (6000) solution induced rapidly and uniformly germination under temperature or moisture stress conditions. **Murray** (1990) reported that priming sweet cron seeds using PEG (6000) promoted germination under low temperature (10°C).

Bradford and Somasco (1994) added that lettuce priming in PEG speeded germination by reducing the hydrotime requirement across a range of water potential at both high and low temperatures. **Bruggink and Toorn** (1995) incubated germinated cucumber seeds in a solution of PEG for 7 days at temperature of 8°C. It was found that most seeds survived without serious damage. **Abd El-Hafiz** (1999) reported that the soaking of okra seeds in PEG (8000) for 24 h improved rate and percent

of germination, increased plant length, leaf area and dry weight. **Sanchez** *et al.* (1999) indicated that priming in PEG increased the final germination percentage in tomato and pepper up to 22 and 94%, respectively, in PEG solutions compared with the control. In cucumber seeds, the best germination was recorded just in water as a partial imbibition medium.

Abd El Fattah and Arisha (2000) showed that soaking common bean seeds cv. Bronco in vitamin B_{12} at a concentration of 2.5 ppm significantly increased stem length, number of leaves and branches per plant as well as the dry weight of all plant organs. **Arisha (2000)** mentioned that soaking pea seeds in vit. B_1 (50,100 and 200 ppm) significantly increased number of leaves, number of branches / plant and dry weight of all plant parts.

Upreti and Murti (2000) studied the effect of seed priming in PEG on French bean (*Phaseolus vulgaris*) cv. Contender. They reported that PEG improved seed germination and seedling growth. **Clark** *et al.* (2001) showed that soaking maize seeds in water overnight before sowing can increase the rate of germination and seedling emergence. **Al-Humaid** (2002) studied the effect of seed immersing of bermudagrass in PEG (6000) solution for 3 or 7 d at 15°C. The result showed that seed priming improved seed germination and seedling growth. **Kaur** *et al.* (2002) studied the effect of primming of chickpea seeds in water for 24 h. It was found that shoot length and shoot biomass were increased compared to non-primed plants.

Khan *et al.* (2005) showed that there was significant increase in seed germination and seedling emergence of mung bean by seed priming with PEG at 300g /L. They added that soaking in water also increased seed germination rate.

El-Seidy (2006) mentioned that sweet corn seed priming in PEG (600) (400g / litre) for 6 h increased plant height, stem diameter, leaf number and fresh weight per plant. **Abd-Allah** *et al.* (2007) studied the

effect of ascorbic acid as seed soaking and foliar spray on common bean, pea and faba bean. They reported that plant height was improved with increasing the level of ascorbic acid (0. 0.1, 0.5, 1.0. m).

2-1-3- Foliar spray:

El-Beheidi *et al.* **(1995)** studied the effect of two concentrations of vit. B₁ (o and 50 ppm) on growth of pea plants. It was found that 50 ppm concentration significantly increased stem length, dry matter of leaves, stem and whole plant at all growth stages. **Fathy and Farid (1996)** reported that using mixture of B₁, B₆ and B₁₂ each of them at 50 mg /l or yeast (5g /l) improved common bean leaf area and dry weight per plant. **Hewedy** *et al.* **(1996)** indicated that the foliar spray on eggplant with soft bread yeast (2g /l) enhanced vegetative growth, i.e., plant height, leaf area, number of leaves and branches.

El-Ghamriny *et al.* (1999) reported that foliar spraying with vit. B_1 at 25 ppm, vit C at 100 ppm and Baker's yeast at 10g / L were the most effective treatments for enhancing number of leaves and dry weight of plant.

However, **Arisha** (2000) investigated the effect of foliar spray of vit. B_1 (50, 100 and 200 ppm) on pea plant. It was reported that all tested concentrations did not show any significant effect on growth (stem length, number of leaves and branches per plant and dry weight of stems, leaves and total dry weight per plant).

Refaat and Balbaa (2001) studied the effect of single and combined foliar application of vit. B_1 and B_2 on lemongrass plants. They found that such treatments improved the vegetative growth. **Tartoura** (2001) mentioned that the yeast extract plus Ca (No3)₂ spraying on pea plants gave an increases in main stem length, number of leaves, shoot fresh and dry weight per plant.

Attoa et al. (2002) noticed that the highest values of plant height, number of branches and leaves as well as fresh and dry weight of *Iberis* amara L. were observed when sprayed by tryptophan amino acid at 75