The Impact Of Hypofractionated Simultaneous Integrated Boost In Intensity Modulated Radiation Therapy For The Treatment Of Localized Prostate <u>Cancer</u>

Thesis
Submitted in partial fulfillment of the doctorate degree
In Clinical Oncology and Radiotherapy

By **AHMAD SAYED KAMAL ALI** *Master of Clinical Oncology*

Supervised by Dr. KAMAL ALI EL-GHAMRAWY

Professor of Clinical Oncology
Faculty of medicine
Cairo University

Dr. SAMEH ABDEL AZIZ HANNA

Professor of Radiology Faculty of Medicine Cairo University

Dr. MUSTAFA SHAWKY EL-HADDAD

Assistant Professor of Clinical Oncology Faculty of Medicine Cairo University

> CAIRO UNIVERSITY 2014

<u>Acknowledgment</u>

First, before all, thanks be to **GOD** this work has been accomplished.

I wish to offer my sincere thanks to **Dr. Kamal El-Ghamrawy**, Professor of Clinical Oncology, Cairo University, for his valuable assistance and support, which have always been beyond description.

I could not forget the great help of **Dr. Sameh Hanna**, Professor of Radiology, Cairo University, during the accomplishment of this work.

I would like to express my deepest gratitude to **Dr. Mustafa El-Haddad**, Assistant Professor of Clinical Oncology, Cairo University, for his care, continuous encouragement and guidance.

I would also like to thank **Maha Kamal-El-Deen**, Radiation Physicist, Cairo University, whose pivotal role in accomplishing this work cannot be overemphasized

I would also like to thank **Dr.RafaatRagaie**, Lecturer of Clinical Oncology, Cairo University, for his assistance and support in accomplishing this work

My deepest thanks are sincerely offered to all thepatients and department radiographers for their patience and cooperation.

Last but not least I would like to express my gratitude to my family for their love and support without which this work could not be accomplished.

Abstract

. Hypofractionated IMRT proved to be a feasible option for the treatment of localized prostate cancer since it has shown an acute toxicity profile similar to conventional fractionation, with GU toxicity \geq grade 2 at 50% and GI toxicity \geq grade 2 at 0% in the hypofractionation arm, while in the control arm GU toxicity \geq grade 2 was 40% and GI toxicity \geq grade 2 was 10%, with no statistical significance between them (p=0.689).

Keyword

RNASEL-VMT- AMCAR- CBCT-IMRT- Hypofractionated

Contents

Acknowl	edgment	2	
List of fig	gures	6	
List of ta	bles	8	
List of A	b breviations	9	
Introduci	ion	12	
OVERVI	EW OF LOCALIZED PROSTATE CANCER	15	
Part I:	BASIC SCIENCE	16	
A.	Anatomical Consideration	16	
В.	Molecular Pathogenesis Of Prostate Cancer	21	
C.	Natural History And Histopathology	25	
D.	Gleason's Score	28	
E.	Serum Prostate-Specific Antigen (PSA)	29	
Part II	: Imaging Studies	33	
1.	Ultrasound	33	
2.	Computed Tomography	35	
3.	Magnetic Resonance Imaging	37	
4.	Magnetic Resonance Spectroscopy	41	
5.	ProstaScint Scanning	42	
6.	Positron Emission Tomography	43	
7.	Imaging methods during external radiotherapy	44	
Part II	I: STAGING AND RISK STRATIFICATION	51	
Sta	ging	51	
RIS	K STRATIFICATION	53	
Part I	V: TREATMENT	56	
Gui	delines	56	
Act	ive Surveillance	59	
Rac	lical Prostatectomy	60	
Bra	chytherapy	63	
Ext	External Beam Radiation65		
And	Androgen Deprivation Therapy78		
Rat	ionale for Hypofractionation	82	

ŀ	Hypofractionated Radiotherapy Treatment in Prostate Cancer	84
PATIE	ENTS AND METHODS	97
Pat	tients	98
Α.	CTsimulation:	100
В.	Delineation:	101
I	I. Target volumes:	101
I	II. Organs at risk:	106
C.	Randomization	109
D.	Prescribed dose:	109
Ε.	Treatment planning	110
F.	Plan Acceptance	112
G.	Plan Quality Assurance	114
Н.	Treatment Verification	115
ı.	Treatment assessment	116
J.	End points	118
Sta	atistical Methods:	118
RESU	JLTS	119
Clir	nico-pathological Data	120
Do	osimetric Analysis	123
-	1. PTV constraints	123
2	2. Risk Structure Constraints	126
Tox	xicity	132
2	1. Urinary toxicity	132
2	2. Gastro-intestinal Toxicity	134
3	3. Sexual symptoms	134
Qu	uality of life assessment	135
Pro	ostaic size	137
Ser	rum PSA	138
Iso	ocenter Directional Shift	139
Tre	eatment Interruption	140
Cos	st	141
DISCU	USSION	142
Concl	lusion and Recommendations	154

English Summary	155
References	169
Mastertable	155
Arabic Summary	179

List of figures

Figure 1: Lymphatic drainage of the prostate (From Green DR, Shabsign R, Scardino PT: Urological	
ultrasonography. In: Walsh PC, Rettic AB, Stamey CA, Vaughan ED Jr [eds]: Campbells's Textbook of U	rology,
6th ed. Philadelphia, WB Saunders, 1992.)	17
Figure 2: Frontal section of male pelvis at right angles to perineal membrane. (From Oelrich TM. The	urethral
sphincter muscle in the male. Am J Anat 1980; 158: 229- 246)	18
Figure 3: Zones of the prostate (From Green DR, Shabsign R, Scardino PT: Urological ultrasonography.	. In:
Walsh PC, Rettic AB, Stamey CA, Vaughan ED Jr [eds]: Campbells's Textbook of Urology, 6th ed. Philad	
WB Saunders, 1992.)	19
Figure 4: The prostate epithelium(Adapted from Nelson WG, De Marzo AM, Isaacs WB: Prostate canc	er. N Engl
J Med 2003; 349:366–381.)	21
Figure 5: Fusion of transcripts from the androgen-regulated TMPRSS2 gene and ETS family genes ETV	1 and
ERG in prostate cancers. (Adapted from Tomlins SA, Rhodes DR, Perner S, et al: Recurrent fusion of TI	MPRSS2
and ETS transcription factor genes in prostate cancer. Science 2005; 310:644–648)	23
Figure 6: Proliferative inflammatory atrophy (PIA) as a precursor to prostatic intraepithelial neoplasia	(PIN) and
prostate cancer. (Adapted from Nelson WG, De Marzo AM, Isaacs WB: Prostate cancer. N Engl J Med	2003;
349:366–381.)	27
Figure 7: Gleason score for histologic grading of prostate cancer demonstrating progressive loss of gla	andular
formation with increasing score. (Adapted from Gleason DF. Histologic grade, clinical stage, and patie	ent age in
prostate cancer. NCI Monogr 1988;7:15	29
Figure 8: prostatic lesion seen by transrectal U/S	34
Figure 9: CT showing prostatic cancerous lesion arising from the peripheral zone	36
Figure 10: A: Normal T1-weighted axial magnetic resonance image. Age-related benign prostatic hype	erplasia in
the transition zone is evident (long arrow). The neurovascular bundles lie adjacent to the peripheral z	one
(short arrow). B: The T-2 weighted axial image of the same level of the gland demonstrates areas of le	ow signal
intensity adjacent to the post biopsy hemorrhage that are suspect for tumor (short arrows and arrow	heads).
This is an example of the hemorrhagic exclusion sign. (Courtesy of Steven Eberhardt, MD.)	38
Figure 11 : MRS image matched to MRI indicating early stage prostate cancer	42
Figure 12: Choline PET-CT in localized prostate cancer	44
Figure 13: BAT-assissted treatment verification images. (Right) saggital image. (Left) transverse image	e, with
various strucutures contoured and ready for alignment. Bladder(orange) prostate(yellow) rectum(gre	en)
seminal vesicle(cyan)	47
Figure 14 : Orthogonal EPID with corresponding DRRs for a case of prostate cancer using bony landmarks	arks with
fiducial markers for patient alignment during treatment	
Figure 15: Cone beam CT seen here mounted perpendicular to the treatment machine gantry	50
Figure 16: prostatic apex can be more accurately defined in MRI fused imaging (left) compared to CT	alone
(right)	102

Figure 17: CT causes overestimation of the postro-lateral aspect of the prostate (right) compared to MR	
Figure 18: The external & internal iliac nodes are delineated from the bifurcation of the common iliac no	
on the axial plane(left) which is usually at the level of L5/S1 space as seen in the saggital plane (middle r	• .
Figure 19: The presacral LN are delineated anterior to the sacral bone from the level of S1 to S3 togethe the iliac nodes	r with
Figure 20:The presacral LN end at S2/S3 as seen on the saggital plane (middle right) with the appearance	e of
the pyriformis muscle and dissappearance of the sacral neural foramina in the axila plane (left)	104
Figure 21: The iliac nodes end at the top of the femoral head. Volume continues caudally as the obturat nodes	
Figure 22: Obturator nodes end at the level of symphysis pubis fusion	
Figure 23: MRI image(left) helps better identification of the prostate-rectum interface compared to CT (right)
Figure 24: MRI image(left) helps better identification of the penile bulb, which appears hyperintense, co to CT (right)	maped
Figure 25: femoral head delineation should include the space between the ball of the femur and acetab	
	108
Figure 26: the optimization process using an eclipse TPS version 8.6 with dose volume constraints and	
priorities input (left) and iterations results (right)	112
Figure 27: Accepted dose distribution demonstrated by isodose colorwash in axial (top), coronal (middle	e) and
sagittal (bottom) view	113
Figure 28: Cumulative DVH for an accepted treatment plan	114
Figure 29: IMRT plan QA using portal dosimetry showing the portal intensity map (left) and gamma eval	uation
(right)	115
Figure 30: Treatment verification by orthogonal anterior (above) and lateral (below) EPID using bony	
landmarks	117
Figure 31: Performance Status distribution in the 2 study groups	121
Figure 32: Gleason Score distribution in the 2 study groups	122
Figure 33: T-Stage distribution in the 2 study groups	122
Figure 34: Risk Group distribution in the 2 study groups	122
Figure 35: Mean value for PTV-T Dose Coverage for the 2 study groups	124
Figure 36: Mean value for PTV-T Dose Coverage for the 2 study groups	125
Figure 37: Mean value for Rectal Wall sparing for the 2 study groups	127
Figure 38: Mean value for Bladder sparing for the 2 study groups	128
Figure 39: Mean value for Bowel Bag sparing for the 2 study groups	129
Figure 40: Mean value for Penile Bulb sparing for the 2 study groups	130
Figure 41: Mean value for Femoral Heads sparing for the 2 study groups	131
Figure 42: GUT toxicity incidence up to 6 months of treatment (above) and GUT toxicity grade occurrence	ce
during treatment (below)	134

Figure 43: Mean Quality of life score for the 2 study groups	136
Figure 44: Mean prostatic volume in cubic centimeters for the 2 study groups	137
Figure 45: Mean PSA for the 2 study groups	138
Figure 46: Mean Value for Isocenter shift for the 2 study groups	140
Figure 47: Comparison between Mean Total Monitor Unit Usage in the 2 study arms	141

List of tables

Table 1: Age-Specific Reference Ranges for Serum PSA and PSA Density Data(Adapted from Oesterling J, Jacobsen S, Klee G, et al: Free, complexed, and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios using newly developed immunofluorometric Table 2: Probability of Cancer Based on Total PSA and Percent of free PSA Results. (Adapted from Catalona WJ, Partin AW, Slawin KM, et al: Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA Table 3: American Joint Committee TNM Staging System for Prostate Cancer (2003)52 Table 4: Risk Group Definitions (D'Amico, et al., 2004)54 Table 5: University of California San Francisco recommendations for ADT.......80 Table 6: Hypofractionation Trials: Schedules and Equivalent Doses in 2-Gy Fractions95 Table 7:Ultrahypofractionation Trials: Schedules and Equivalent Total Doses in 2-Gy Fractions......96 Table 11: PTV-T constraints comparison by volume percent coverage in the 2 study groups.......124 Table 12: PTV-LN constraints comparison by volume percent coverage in the 2 study groups125 Table 13: Rectal constraints comparison by volume percent coverage in the 2 study groups127 Table 15: Bowel Bag constraints comparison by volume percent coverage in the 2 study groups129 Table 16: Penile Bulb constraints comparison by volume percent coverage in the 2 study groups.......130 Table 17: Femoral Heads constraints comparison by volume percent coverage in the 2 study groups 131 Table 19: Quality of life score comparison between the 2 study groups.......136 Table 20: Prostatic size comparison between the 2 study groups137 Table 22: Isocenter shift in millimeters comparison between the 2 study groups139 Table 23: Radiation treatment interruption in days comparison between the 2 study groups......140

List of Abbreviations

Abbreviation	Definition
AMCAR	A-MethylacylCoaRacemase
ADT	Androgen Deprivation Therapy
ASCO	American Society Of Clinical Oncology
AUA	American Urological Association
BAT	B-Mode Acquisition And Targeting
BED	Biological Effective Dose
b-DFS	Biochemical Disease Free Survival
ВРН	Benign Prostatic Hyperplasia
ВТ	Brachytherapy
СВСТ	Cone Beam CT
СТ	Computer Tomography
CTCAE	Common Terminology Criteria For Adverse Events
CTV-LN	Lymph Node Clinical Target Volume
CTV-T	Tumor Clinical Target Volume
DRE	Digital Rectal Examination
DRR	Digitally Reconstructed Radiograph
DWI	Diffusion-Weighted Imaging
EBRT	External Beam Radiotherapy
EORTC	European Organization For Research And Treatment Of Cancer
EPIC	Expanded Prostate Cancer Index Composite
EPID	Electronic Portal Image Device
ETS	Erythroblast Transformation Specific
FDG	Fluorodeoxyglucose
GI	Gastro-Intestinal
GU	Genito-Urinary
HDR	High Dose Rate
IGRT	Image-Guided Radiotherapy
IMRT	Intensity Modulated Radiotherapy
kV	Kilovolt
LE	Egyptian Pound
LENT-SOMA	Late Effect In Normal Tissue Subjective, Objective Management And Analytic Scale
LDR	Low Dose Rate
MLC	Multi-Leaf Collimator
MRI	Magnetic Resonance Imaging

Abbreviation	Definition
MRS	Magnetic Resonance Spectroscopy
MSR-1	Macrophage Class-A Scavenger Receptor
MU	Monitor Unit
MV	Megavolt
NCCN	National Comprehensive Network For Cancer
NEMROCK	Clinical Oncology Department, Cairo University
NSAID	Non-steroidal anti-inflammatory drugs
os	Overall Survival
PACS	Picture Archiving And Communication System
PAP	Prostatic Acid Phosphatase
PCa	Prostate Cancer
PET	Positron Emission Tomography
PIA	Prostatic Inflammatory Atrophy
PIN	Prostatic Inflammatory Neoplasia
PLND	Pelvic Lymph Node Dissection
PSA	Prostatic Specific Antigen
PSAV	Prostatic Specific Antigen Velocity
PSA-DT	Prostatic Specific Antigen Doubling Time
PSMA	Prostatic Smooth Muscle Actin
PPC	PercentOf Positive Core
PTV-LN	Lymph Node Planning Target Volume
PTV-T	Tumor Planning Target Volume
QA	Quality Assurance
QLQ	Quality Of Life Questionnaire
QOL	Quality Of Life
QUANTEC	Quantitative Analyses Of Normal Tissue Effects In The Clinic
RF	Radiofrequency
RNASEL	Ribonuclease-L
RP	Radical Prostatectomy
RT	Radiotherapy
RTOG	Radiation Oncology Group
SBRT	Stereotactic Body Radiotherapy
SD	Standard Deviation

Abbreviation	Definition
SWOG	South Western Oncology Group
TE	Echo Time
TPS	Treatment Planning System
TR	Repetition Time
TRUS	Trans-Rectal Ultrasound
U/S	Ultrasound
UCSF	University Of California, San Francisco
WPI	Whole Pelvic Irradiation
VMAT	Volumetric Modulated Arc Therapy
2D	Two Dimensional
3D-CRT	Three Dimensional Conformal Radiotherapy

Introduction

Prostate cancer is the most commonly diagnosed visceral cancer in men, 29%, and the second leading cause of cancer death, 11%, with a lifetime risk of 20%, in the USA according to the 2013 estimates (Siegel, et al., 2013). It also has a similar ranking in Europe, being the most commonly diagnosed cancer with an incidence of 65 per 100000, and the third most common cancer death according to the 2012 estimates (Schroder, et al., 2012). In Egypt the incidence rate is 8.3 per 100000 (Curado, et al., 2007).

There has been a dramatic increase in the annual age-adjusted incidence rate in the last two decades owing to the use of digital rectal examination, serum PSA, transrectal U/S and biopsy as screening tools. On the other hand the introduction of such methods has allowed the treatment of patients at earlier stages, where low risk patients have become 45% of localized cases, resulting in a decrease in the age-adjusted death rate, 4%(Parken, 2005).

Historically, radical prostatectomy used to be the standard treatment for localized prostate cancer, with radiation limited to locally advanced disease and the elderly, however, the expanding evidence of the competitive results for radiotherapy versus surgery reported in literature, has encouraged the use of radical radiotherapy treatment (**Peshel and Colberg, et al., 2003**).

Megavoltage external beam radiotherapy was introduced in the late 1960s for the treatment of prostate cancer. With the development and integration of modern imaging modalities, treatment planning systems and modern treatment techniques, more accurate target definition was achieved, allowing for more normal tissue sparing and dose escalation, ultimately improving outcome (**Zelefsky, et al., 2002**).

Compared with the conventional three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT) offers many potential benefits. IMRT can improve dose conformity around the target volume, thereby increasing the therapeutic ratio

which can permit tumor dose escalation, resulting in improved local control and reduced risk of treatment related complications (Ezzell, et al., 2003).

Another advantage of IMRT is its ability to generate dose distributions of specific levels of nonuniformity in target volumes. This is due to the nature of inverse planning, in which the prescription dose is specified as an objective to be achieved by the planning process. Accordingly, different dose levels can be prescribed to different targets or different regions of the target. An immediate application of this characteristic of IMRT is to plan and treat the boost dose together with the large field prescription dose. Simultaneous treatment of multiple targets with different prescribed doses is called the simultaneous integrated boost (SIB) technique(MohanandWu, 2005).

The dose distributions of IMRT treatment planscan be expected to be significantly superior in terms of higherconformity if designed to deliver different dose levels to different tissues simultaneouslyin a single treatment session. This permits delivery of gradeddose levels to tumor-bearing tissues and tissues at riskof subclinical tumor spread, and spares normaltissues to the greatest extent possible. The SIB-IMRT strategy not only producessuperior dose distributions but also is an easier, more efficient, and perhaps less error-prone way of planning anddelivering IMRT because it involves the use of the same planfor the entire course of treatment(MohanandWu, 2005).

Regarding the specificoption of external beamradiotherapy, the current widelyaccepted standard regimen for organ-confined prostate cancerinvolves approximately eight weeks of fractionatedtreatments with a daily dose of 1.8–2.0Gy to a totaldose in the range of 70– 80Gy(Mohler, et al., 2013). For patients with an intermediate or high risk of recurrence and spread, dose escalation has been demonstrated to improve biochemical controlwith acceptable toxicity using contemporary radiotherapy techniques (Pollack, et al., 2004) (Kupelian, et al., **2005).** Unfortunately, dose escalation using a conventionally fractionated treatment schedule requires a lengthened treatment course that is less convenient for patients and more costly for the government and treating institutions. Emerging evidence accumulating from multiple recent

studies indicates that more convenient and efficient shortened courses of radiotherapy for prostate cancer yield outcomes that are equivalent and possibly superior to the lengthier standard regimens(Faria, et al., 2011) (Pollack, et al., 2013). The scientific rationale for such "hypofractionated" treatment lies in the unique radiobiologic properties of prostate cancer.

Hypofractionation is not a new concept in the radiotherapy of prostate cancer. Several phase I and II trials have addressed this issue. They have used fractionation regimens ranging from 2.5Gy per faction (McCammon, et al., 2008) to 7Gy per fraction (Madsen, et al., 2012) producing acceptable acute and chronic toxicities (Mazio, et al., 2009) and biochemical control comparable to conventional fractionation schemes (Faria, et al., 2011).). Encouraged by these results several large phase III trials have been set underway to assess the benefit of hypofractionation in prostate cancer (Kupelian, et al., 2007)(Yeoh, et al., 2010)(Dearnaley, et al., 2012) (Pollack, et al., 2013).

Aim of work

The aim of the current study is to assess the feasibility of applying hypofractionated simultaneous integrated boost in intensity modulated radiation therapy for the treatment of localized prostate cancer and comparing it to conventionally fractionated sequential IMRT, with regards to its effect on treatment toxicity, as well as impact on treatment delivery, patient convenience and quality of life and its overall cost benefit.