Serum Levels of Fibroblast Growth Factor-21 (FGF-21) in Coronary Heart Disease

Thesis

Submitted for partial fulfillment of M.Sc Degree In Medical Biochemistry

Presented by

Taha Abdelrazik Darweesh

M.B.B.Ch. Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. / Manal Mohsen Abdelfattah

Professor of Medical Biochemistry Faculty of Medicine Cairo University

Dr. / Salwa Fayez Hasan

Assistant Professor of Medical Biochemistry
Faculty of Medicine
Cairo University

Dr. / Mervat Mohamed Khalaf

Assistant Professor of Critical Care Medicine Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University (2013)

ACKNOWLEDGEMENTS

First I would like to thank ALLAH for his blessing, care and mercy.

I have the honor to present this work under the supervision of Prof. Dr. Manal Mohsen Abdelfattah, Professor of Medical Biochemistry, Faculty of Medicine, Cairo University, for her patience and her encouragement to me.

I feel very grateful to Dr. Salwa Fayez Hasan, Assistant Professor of Medical Biochemistry, Faculty of Medicine, Cairo University for her support and guidance, without her this work would have never seen the light.

Also I would like to thank Dr. Mervat Mohamed Khalaf, Assistant Professor of Critical Care Medicine, Faculty of Medicine, Cairo University, for her great cooperation.

I would like to thank all my senior staff and my colleagues in Medical Biochemistry department, Cairo University for their effort and support during this work.

I would like to thank all my friends for their support.

Last but not least, I thank my father, my brothers and my wife for their invaluable care and unlimited support.

Taha Azouz

Contents

List of Tables	I- II
List of Figures	III- IV
List of Abbreviations	V- X
Abstract	XI- XII
Introduction and Aim of the work	XIII- XIV
Review of literature	
 Chapter I: Fibroblast Growth Factors (FGF) Family Chapter II: Fibroblast Growth Factors-21 (FGF-21) Chapter III: Coronary Artery Disease 	12
Subjects and methods	54
Results	67
Discussion	88
Conclusion and recommendation	97
Summary	98
References	101
Index	118

List of Tables

Tables of		Page
review		
Table 1	Metabolic effects of FGF21 in animal models	16
Table 2	Clinical significance of FGF21 in human disease	33
Tables of		Page
results		
Table 3	Sex distribution among cases versus control	68
Table 4	DM distribution among cases versus control	69
Table 5	HTN distribution among cases versus control	69
Table 6	Coronary Angiography distribution among cases versus control	69
Table 7	Age, serum HDL-c, LDL-c, and Insulin in patient and control groups	70
Table 8	Median levels of Body mass index (BMI), Diastolic blood pressure (DBP), Systolic blood pressure (SBP) and other biochemical studied parameters in patients and control groups	71
Table 9	Age, serum HDL-c, LDL-c, and Insulin of CHD patients and control groups	73
Table 10	Median levels of Body mass index (BMI), Diastolic blood pressure (DBP), Systolic blood pressure (SBP) and other biochemical studied parameters in CHD patients and control groups	74
Table 11	Serum HDL-c, LDL-c, and Insulin of Subgroup 1, 2 and 3 CHD patients and control groups	76
Table 12	Median levels of Diastolic blood pressure (DBP), Systolic blood pressure (SBP) and other biochemical studied parameters in Subgroup 1, 2 and 3 CHD patients and control groups	77
Table 13	Serum HDL-c, LDL-c, and Insulin of Subgroup A, B and C patients and control groups	79

ī

[Type text]

Table 14	Median levels of Diastolic blood pressure (DBP), Systolic blood pressure (SBP) and other biochemical	80
	studied parameters in Subgroup A, B and C patients	
	and control groups	
Table 15	Correlation of serum levels of FGF-21 with the other	82
	assessed parameters in CHD patients	
Table 16	Receiving Operating Curve (ROC) curve of serum	86
	concentration of FGF 21 for identification of patients	
	destined to develop CHD compared to control	
Table 17	Receiving Operating Curve (ROC) curve of serum	87
	concentration of FGF 21 for identification of patients	
	destined to develop CHD compared to non CHD	

List of Figures

Figures of		Page
review		
Figure 1A	Classification of FGF family	3
Figure 1B	Structure of FGF	4
Figure2	FGFR structure and control of ligand specificity	6
Figure 3	FGF signalling	10
Figure 4	The proposed mechanism of FGF21 receptor activation	14
Figure 5	Mechanisms of action and metabolic activities of FGF21	15
	in different tissues	
Figure 6	FGF21 acts as a downstream target of PPAR-α exerting	17
	multiple biological effects in hepatocytes	
Figure 7	Pleiotropic metabolic actions of FGF21 in adipocytes	22
Figure 8	Proposed Mechanism of FGF21 Action	26
Figure 9	Biology of FGF21 in Liver, Brain, and Adipose Tissue	30
Figure 10	FGF21 and insulin-resistant states	35
Figure 11	The process of atherosclerotic plaque formation	41
Figure 12	Diversity of lesions in human coronary atherosclerosis	44
Figure 13	Biomarkers of acute coronary syndromes	47

Figures of		Page
results		
Figure 14	Sex distribution among cases versus control.	68
Figure 15	The median levels serum of and FGF-21 in patient	72
	versus control group.	
Figure16	The median levels of serum FGF-21 in CHD patient	75
	group versus control group	
Figure 17	The median levels of serum FGF-21 in Subgroup 1, 2	78
	and 3 CHD patients and control groups.	
Figure 18	The median levels of serum FGF-21 in Subgroup A, B	81
	and C patients and control groups.	
Figure 19	Correlation between levels of serum FGF21 and the	83
	BMI in CHD patients.	
Figure 20	Correlation between levels of serum FGF21 and the	84
	levels of the SBP in CHD patients.	
Figure 21	Correlation between levels of serum FGF21 and the	84
	levels of the DBP in CHD patients.	
Figure 22	ROC curve analysis to predict CAD versus normal	86
	control.	
Figure 23	ROC curve analysis to predict CAD versus non CAD.	87

Abbreviations	
ACS	Acute Coronary Syndrome
AKT	Referred to type of mice that develops spontaneous Thymic Lymphomas (Akt = protein kinase B)
AN	Anorexia Nervosa
BAT	Brown Adipose Tissue
BMI	Body mass Index
CABG	Coronary Artery Bypass Graft
CAD	Coronary Artery Disease
cAMP	Cyclic Adenosine Mono Phosphate
cDNA	Complementary Deoxyribonucleic Acid
CMECs	Cardiac Microvascular Endothelial Cells
CHD	Coronary Heart Disease
CIP	Cerulein-Induced Pancreatitis
СК	Creatine Kinase
CKD	Chronic Kidney Disease
DAG	Diacylglycerol
DBP	Diastolic blood pressure
DM2	Diabetes Mellitus type 2
ECG	Electrocardiogram
ED	Emergency Department
ER	Endoplasmic Reticulum
ERK	Extracellular-signal-Regulated Kinase

Erm protein	Ezrin–Radixin–Moesin proteins
ESRD	End-Stage Renal Disease
Etv4	E- Twenty six (ETS)translocation variant 4
Etv5	E- Twenty six (ETS)translocation variant 5
FBG	Fasting Blood Glucose
Fbg	Fibrinogen
FFA	Free Fatty Acid
FGF	Fibroblast growth factor
FGFR	Fibroblast growth factor receptor
Frs2α	FGFR substrate -2 α
GDP	Guanosine Diphosphate
GGT	γ-Glutamyltransferase
GH	Growth Hormone
GLUT1	Glucose Transporter 1
GLUT4	Glucose Transporter 4
Grb2	Growth factor receptor-bound 2
GTN	Glyceryl trinitrate
GTP	Guanosine Triphosphate
HBS	Heparan sulfate Binding Site
HDLc	High Density Lipoproteins cholesterol
HMG-CoA	3- Hydroxy 3-Methyl Glutaryl- CoA
HOMA-IR	Homeostasis Model of Assessment- Insulin Resistance
HOMA-IS	Homeostasis Model of Assessment- Insulin Sensitivity
HS	Heparan Sulfate

HSPG	Heparan Sulphate Proteoglycan
ICAM	Intercellular Adhesion Molecule
lg	Immunoglobulin
IGF-1	Insulin-like Growth Factor 1
IHD	Ischemic Heart Disease
IL	Interleukin
IMA	Ischemia Modified Albumin
IP3	Inositol-1, 4, 5-triphosphate
KLB	β-Klotho
KO mouse	Knockout mouse
LADA	Latent Autoimmune Diabetes in Adults
LDLc	Low Density Lipoproteins cholesterol
MAP	Mitogen Activated Protein
МАРК	Mitogen-Activated-Protein Kinase
MEK	Mitogen Activated Protein kinase kinase
MetS	Metabolic Syndrome
MI	Myocardial Infarction
MIDCAB	Minimally Invasive Direct Coronary Artery Bypass
МКР3	MAPK phosphatase 3
МРО	myeloperoxidase
MMP	Matrix Metalloproteinases
MR	magnetic resonance
mRNA	Messenger Ribonucleic Acid
Myg	myoglobin

NAFLD	Non-alcoholic Fatty Liver Disease
NPY	Neuropeptide Y
NSTEMI	Non—ST-segment Elevation Myocardial Infarction
NT-proBNP	N-terminal proBNP
Ox-LDL	oxidized low-density lipoprotein
PAI-1	Plasminogen Activator Inhibitor-1
PAPP-A	pregnancy-associated plasma protein-A
PCI	Percutaneous Coronary Intervention
Pea3	Polyomavirus Enhancer Activator 3
PGC-1α	Peroxisome Proliferator-Activated Receptor Co-
	Activator Protein 1 α (that controls the expression of
	gluconeogenic genes)
PI3K	Phosphoinositol-3-kinase
PIGF	placental growth factor
PIP2	Phosphatidylinositol-4, 5-diphospate
PLC γ	Phospholipase Cγ
PPARα (PPARA)	Peroxisome Proliferator-Activated Receptor α
PPARγ (PPARG)	Peroxisome Proliferator-Activated Receptor γ
PTCA	Percutaneous Transluminal Coronary aAngioplasty
RAF	Rapidly Accelerated Fibrosarcoma (protooncogene
	cytoplasmic serine/threonine protein kinases of the
	Ras/Mos family)
RAS	Rat Sarcoma (an oncogene discovered in the
	retroviruses Harvey and Kirsten rat sarcoma viruses)

RNAi	Ribonucleic Acid interference
RXR	Retinoid X Receptor
sCD40L	Soluble CD40 Ligand
SBP	Systolic blood pressure
SEF	SL3-3 enhancer factor
SH2	Src homology 2
SirT1	Silent mating type Information Regulation 2 homolog 1
SOS	Son Of Sevenless
SPRY	Sprouty family of proteins (Receptor tyrosine kinase
	signaling modulators)
Src protein	Sarcoma (A PROTEIN-TYROSINE KINASE originally
	identified by homology to the Rous sarcoma virus)
STAT	Signal Transducer and Activator of Transcription
STAT5	Signal Transducer and Activator of Sranscription 5
STEMI	ST-segment Elevation Myocardial Infarction
TAG	Triacylglycerol
TF	Tissue Factor
TK	Tyrosine Kinase
TM	Transmembrane
TNF	Tumor Necrosis Factor
TNI	Troponin I
TNT	Troponin T
tPA	Tissue type Plasminogen Activator
Tyr	Tyrosine

TZDs	Thiazolidinediones
UA	Unstable Angina
VCAM	vascular cell adhesion molecule
VLCD	Very Low Calorie Diet
VLDL	Very Low Density Lipoproteins
VWF	von Willebrand factor
WAT	white Adipose Tissue

Abstract

Background: Fibroblast growth factor 21 (FGF21) is an emerging metabolic regulator. Circulating levels of FGF-21 are found in obese individuals and subjects with metabolic syndrome or type 2 diabetes and are closely associated with obesity and cardiovascular risk. However data are limited for advanced outcomes such as coronary heart disease (CHD). Previous studies of FGF21in CHD have been largely confounded by obesity and did not describe FGF21 level in CHD in terms of severity.

Aim of work: Investigating the associations between serum FGF-21 in CHD subjects strictly matched for BMI. It also investigated the possible association between serum FGF21 and the coronary angiographic findings in terms of number of coronary vessels affected. Associations between serum FGF21, in CHD individuals, with diabetes, hypertension, or both were also addressed.

Methods: Seventy patients were recruited from individuals admitted to the Critical Care Unit, for coronary angiography to assess CHD. Twelve (age, sex and body mass index (BMI) matched) apparently healthy individuals were also included in the present study. After coronary angiography the patients group were classified into: Sub-group (A): Coronary Artery Disease patients without DM or hypertension; Sub-group (B): Coronary Artery Disease patients with DM and/or hypertension; Sub-group (C): Subjects showing normal angiography but suffering from DM and/ or hypertension. Also CHD patients were classified according to number of stenosed coronary vessels into 3 subgroups with 1, 2 and multi-vessel affection. Fasting serum levels of FGF21, glucose, insulin and lipid profile was estimated.

Results: The present results illustrated an increase in the median levels of serum FGF-21 in CHD patients versus the control group. A significant increase in the median levels of FGF-21 was detected in CHD patients with two vessel and multi-vessel affection compared to the control group and the one-vessel affecting group. Serum concentrations of FGF-21 were also increased in CHD subjects with diabetes or hypertension in

comparison to diabetic and hypertensive patients not suffering from CHD. There was a highly significant positive correlation between serum levels of FGF-21 and each of BMI (r=0.7, p < 0.001), SBP(r=0.63, p < 0.001), and DBP (r=0.67, p < 0.001). A weakly significant positive correlation was also found between serum levels of FGF-21 and each of TAG (r=0.223, p < 0.05) and serum levels of LDL-c (r=0.223, p < 0.05). A weakly significant negative correlation was also found between serum levels of FGF-21 and serum levels of HDL-c (r=0.23, p < 0.05). Multi-variate logistic regression analysis revealed that the SBP was an independent risk factor for CHD. ROC curve analysis indicated that the optimum cut off value for plasma FGF 21 level in patients with CHD versus non CAD was 256 which gives 60% sensitivity and 63.64% specificity.

Conclusion: This study provides clinical evidence revealing that serum concentrations of FGF-21 are increased in CHD subjects with diabetes or hypertension in comparison to diabetic and hypertensive patients not suffering from CHD. Our data suggest that serum concentrations of FGF21 in humans are not related to insulin secretion, but rather to lipid metabolism. SBP appears to be strongly associated with serum FGF21 in CHD subjects. The consistent increase in FGF21 seen in human CHD patients and apparent significant difference between severity classified subgroups raises the intriguing possibility that FGF21 could be a biomarker for CHD and may be used to asses severity of CHD.

Key Words: Serum Levels - Fibroblast Growth Factor-21 (FGF-21) - Coronary Heart Disease