

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

﴿ الله المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار % ١-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠ مئوية ورطوبة نسبية من ٢٠-٠٠ مئوية ورطوبة نسبية من ٢٠-٠٠ المؤية To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثاثق

الإصلية تالفة

بالرسالة صفحات لم

ترد بالإعل

Short-term Growth and Bone Turnover in Children with Persistent Asthma During Inhaled Steroid Therapy

Thesis Submitted in partial fulfillment of MD degree (Pediatries)

> Presented by Christine William Shaker (MB,BCh; MSe) Cairo University

Under supervision of:

Prof. Dr. Fatma Mohamed Mokhtar El Heneidy
Professor of Pediatrics

Faculty of Medicine Cairo University

Prof. Dr. Nadia Ahmed Amin Mostafa
Professor of Pediatrice

Professor of Pediatries Faculty of Medicine Cairo University

Prof. Dr. Sarah El Kateb

Professor of Chemical Pathology Faculty of Medicine Cairo University

Crack Il Habely

Faculty of Medicine Cairo University

Control Van men P

بسم الله الرحمن الرحيم

بناء على موافقة الأستاذ الدكتور / نانب رئيس الجامعة بتاريخ ٢٠٠٣/١/٢١ اجتمعت اللجنة المشكلة من الأساتذة

أ.د. / فاطمة الهنيدي أستاذ طب الاطفال - كلية الطب _ جامعة القاهرة (عن المشرفين) أ.د. / نرمين بهجت أستاذ الباثولوجيا الكيميانية - كلية الطب _ جامعة القاهرة (ممتحن داخلي) أ.د. / كريمة عبد الخالق أستاذ طب الإطفال - كلية الطب _ جامعة عين شمس (ممتحن خارجي)

بقاعة الدور الثانى بالمركز الطبى الوقائي لمناقشة علنية لرسالة الدكتوراه فى طب الأطفال المقدمة من الطبيبة / عريستين وليه شاعر

وذلك في تمام الساعة الحادية عشر صباحاً يوم الاثنين الموافق ١٠٠٣/٤/٧ م

عنوان الرسالة:

تأثير العلاج بمركبات الكورتيزون عن طريق الإستنشاق على النمو و ديناميكية بناء و إحلال العظام في الأطفال المصابين بالربو الشعبي المزمن على المدى القصير.

الملخص:

إن الربو الشعبي يعتبر الآن من الأمراض المزمنة المصاحبة لإلتهاب في مجرى التنفس الذي يقل باستخدام مركبات الكورتيزون. إن الهدف من هذه الدراسة هو معرفة تأثير مستنشقات الكورتيزون على النمو و على بناء و إحلال العظام عند الأطقال المصابين بالربو الشعبي. و قد شملت هذه الدراسة ٢٤ طفلاً مصابا بالربو الشعبي (مجموعة 1) كما تشمل الدراسة ١٤ طفلاً سليما (مجموعة الدراسة ٢٤ طفلاً مصابطة و كانت تشمل ٨ ذكور و ٢ إناث من نفس الفئة العمرية. و قد تم قياس الطول و الوزن و مؤشر كتلة الجسم (BMI) كما تم قياس نسبة مادتي PICP و ICTP قيل و بعد العلاج و التي تعكس بناء و إحلال العظام على التوالي. و قد وجد أنه لا يوجد تأثير ذو دلالة الحصائية للعلاج بمستنشق الفلكسوتيد على النمو بينما حدث إنخفاض في مادتي PICP و PICP و ICTP.

To my beloved Youssef You are the light of my life

ACKNOWLEDGEMENT

First of all. I would like to thank God for His grace and mercy, and for giving me the effort to complete this work.

I would like to express my deepest gratitude and greatest respect to <u>Prof. Dr. Fatma El-Heneidy</u>, Professor of Pediatrics, Cairo University, who spent much of her valuable time in meticulously revising this thesis, and for her creativity in initiating and completing this work.

I wish to express my sincere thanks and appreciation to <u>Prof. Dr. Nadia Mostafa</u>, Professor of Pediatrics, Cairo University, under whose supervision I had the honor to proceed with this work: her kind guidance and help made this work possible.

I would like to record my gratitude to <u>Prof. Dr. Sarah El-Kateb</u>, Professor of Chemical Pathology, Cairo University, for her great help, assistance and direction throughout the period of this work.

My deepest thanks go to Dr. Mohamed Shehatah, Lecturer of Chemical Pathology, Cairo University, for his great help with the laboratory work.

Sincere thanks are due to Dr. Mona El-Lawendi, Lecturer of Community Medicine, Cairo University, for her kind patience and help with the statistical analysis of the present work.

No words are sufficient to express my sincere love and deepest thanks to my dear husband, his love and support gave me the strength to go on.

I would also like to express my deepest gratitude to my parents, brother, and sisters for their endless love and support.

To the asthmatic children, for whose benefit the present work was conducted, I wish it would help you a step forward.

CONTENTS

		Page
•	List of abbreviations	
•	List of tables	
•	List of figures	
•	Key words – Abstract	
•	Introduction	1
•	Aim of work	2
•	Review of Literature	3
	Chapter (1): Bronchial asthma:	3
	- Definition	3
	- Epidemiology	4
	- Prognosis	5
	- Prognostic factors	6
	- Mortality	7
	- Morbidity	8
	- Classification of asthma	9
	- Genetics of asthma	13
	- Environmental factors	15
	- Airway pathology	16
	- Pathophysiology	19
	- Bronchial hyperresponsiveness	22
	- Asthma triggering factors	27
	- Airway inflammation	33
	- Mechanisms of allergic response	37
	- Inflammatory cells in asthma	41
	- Inflammatory markers and mediators	64
	- IgE	78
	- Airway remodeling	84
	- Neurogenic mechanisms in asthma	87
	- Complications of bronchial asthma	89

	Chapt	er (II): Initial diagnosis and treatment of asthma:	91
	-	Medical history	92
	-	Physical examination	
	- 1	Pulmonary function testing	93
	-	Additional studies	93
	=	Differential diagnosis	96
	-	Periodic assessment and monitoring	97
	_	Control of factors contributing to asthma severity	101
	,-1	Preventing the onset of asthma??	103
	-2	Immunotherapy	105
	-	Long-term management of asthma	106
	_	Managing exacerbations of asthma	112
×	Chap	ter (III): Glucocorticosteroids:	115
	-	Introduction	115
	-	Mechanism of action	115
	-	Clinical efficacy of inhaled steroids in children	120
	-	Pharmacokinetics	121
	Æ	Dosing regimen	123
	-	Side effects of inhaled steroids	123
	-	Clinical use of inhaled steroids	134
	-	Systemic steroids	135
	=	Side effects of systemic steroids	136
	_	Aerosol delivery devices	136
×	Chap	ter (IV): Normal bone formation and turnover:	139
	-	Bone formation	139
	-	Osteoblasts and bone matrix	140
	-	Bone mineralization	140
		Osteoclasts and bone resorption	141
	-:	Development of bone and growth plates	142
	-	Bone remodeling and bone markers	145
	_	Statural growth	147
×	Chap	ter (V); Pulmonary function tests:	152
		Definitions of lung volumes and capacities	152
	-	Measurements of lung volumes and capacities	154
	-	Definition of flow rates	157

	 Measurements of flow rates 	159
•	Subjects and methods	162
•	Results and analysis of data	181
•	Discussion	267
•	Conclusion	308
•	Recommendations	309
•	Summary	310
•	References	312
•	Arabic Summary	

KEYWORDS

Bronchial asthma – inhaled corticosteroids – pulmonary functions – growth – bone turnover

ABSTRACT

Bronchial asthma is a chronic inflammatory disease of the airways, which reflects the importance of corticosteroids as being the first line choice for anti-inflammatory therapy for long-term prophylactic treatment in persistent asthma; however, their risks must be carefully considered, especially regarding bone metabolism and growth suppression in children.

The aim of the present study was to compare the formation and degradation markers of bone turnover in children with asthma who are using inhaled fluticasone propionate (FP), as well as to study the effect of inhaled FP on short term statural

growth, and the degree of improvement in pulmonary functions.

The present study included 34 asthmatic children (group I), 18 males and 16 females, of the age group 6-12 years, who were further subdivided into two groups: a) Group Ia: receiving fluticasone propionate (FP), via metered dose inhalers (MDI), at doses equal to or below 200 mcg/day (19 patients), and b) Group Ib: receiving FP at doses above 200 mcg/day (15 patients). The study also included 14 healthy, non-atopic, non-asthmatic children (group II) as controls. They were 8 males and 6 females of the

same age group.

The results of the present work demonstrated a statistically significant decrease in asthma symptom score in both subgroups, as well as improvement of all asthma symptoms. A statistically significant increase in mean weight was observed in both subgroups, that was within the normal percentiles. Total patients achieved a mean increase in weight of 116.03+/-71.11% to that predicted. Similarly, a statistically significant increase in mean height was observed in both subgroups, that was within the normal percentiles. Total patients achieved a mean increase in height of 99.35+/-24.48% to that predicted. However, no statistically significant increase in mean BMI was demonstrated in either group. As regards pulmonary functions, a statistically significant increase in mean PEFR, FEV1, FEV1/FVC, and FEF25-75 was detected after treatment. No statistically significant difference between pre- and post-treatment mean values of serum calcium, phosphorous, and alkaline phosphatase was demonstrated. However, a statistically significant decrease in post-treatment mean values of both PICP and ICTP as compared to pretreatment values was observed implying a decrease in rate of bone turnover. Moreover, a statistically significant positive correlation was demonstrated between post-treatment levels of PICP and ICTP, and this "coupling" in decreased rate of formation as well as degradation implies no net bone loss.

List of Abbreviations

AA: Arachidonic acid

AEC: Absolute eosinophilic count
Alk P: Serum total alkaline phosphatase

AP-1: Activator protein-1
APC: Antigen presenting cell
ASM: Airway smooth muscle

BAL(F): Bronchoalveolar lavage (fluid)
BDP: Beclomethasone dipropionate
BHR: Bronchial hyperresponsiveness

BUD: Budesonide

C (3a, 5a, etc.): Complement (3a, 5a, etc.)

Ca⁺⁺: lonized calcium
CBC: Complete blood count

CD (4+, 8+, etc.): Cluster differentiation antigen (4+, 8+, etc.)

CGRP: Calcitonine gene-related peptide
COX-2: Inducible cyclooxygenase
cPLA2: Inducible phospholipase A2

CTAP-III: Connective tissue activating peptide-III

CTMC: Connective tissue mast cell
DNA: Deoxyribonucleic acid
DPDs: Deoxypyridinolines
DPI: Dry powder inhaler
DSCG: Disodium cromoglycate
EAR: Early asthmatic response
EBV: Epstein-Barr virus

EBV: Epstein-Barr virus
ECM: Extracellular matrix
ECP: Eosinophil cationic protein
EDN: Eosinophil derived neurotoxin

EPO: Eosinophil Peroxidase

ERK: Extracellular signal-regulated kinase

ERV: Expiratory reserve volume
EPX: Eosinophil protein X
Fab: Fragment antigen binding
Fc: Fragment crystalizable

FcyRII: Intermediate affinity Fc IgG receptors
FcyRIII: Low affinity Fc IgG receptors
FceRI: High affinity Fc receptors for IgE
FceRII: Low affinity Fc receptors for IgE

FDC: Follicular dendritic cells

FEF₂₅₋₇₅: Forced expiratory flow through the midportion of the FVC

FEV₁: Forced expiratory volume in the first second **FMLP:** N-formyl-methionyl-leucyl phenylalanine

FP: Fluticasone propionate
FRC: Functional residual capacity
FVC: Forced vital capacity
GH: Growth hormone

GINA: Global Initiative for Asthma

GM-CSF: Granulocyte macrophage-colony stimulating factor