Advanced MR Techniques in Differentiation between Residual/ Recurrent Pediatric Brain Tumors and Post treatment Gliosis/ Necrosis

Thesis

Submitted in partial fulfillment of MD Degree in Diagnostic Radiology

By

EL Shaimaa Mahmoud Abdallah Sharaf

MB. B.CH. (Cairo University) M Sc (Cairo University)

Supervisors

Prof. Essam Aly El Shiekh

Professor of Diagnostic Radiology Professor of Diagnostic Radiology Faculty of medicine Cairo University

Prof. Iman Mohamed Zaki

The National cancer institute Cairo University

Dr. Ahmed Reda Semesem

Assistant Professor of Diagnostic Radiology The National cancer institute Cairo University

> Cairo University 2013

Acknowledgement

I would like to express my deep gratitude to Allah for all the blessings I have in my life. A special gratitude I give to my great father Prof. Mahmoud Sharaf for the useful comments, valuable remarks and guidelines given through the learning process of this thesis. Furthermore I would like to thank Prof Dr Essam El Shiekh for his continous support & encouragement all through the way. I would also like to acknowledge with much appreciation the crucial role of Prof Dr Iman Zaky, who gave the permission & allowed me to use all required equipment and the necessary materials to complete my thesis at The Childrens' Cancer Hospital 57357. Thank you my Professors, without your guidance this thesis would not have been made.

Last but not least, I would like to thank my loved ones, who have supported me throughout the entire process, both by keeping me harmonious and helping me putting pieces together. Thank you my great mother. Thank you my beloved husband. I will be grateful forever for your love.

Abstract

Keywords:NAA-MR- ADC- Gliosis/ Necrosis

In this study 50 pediatric brain tumors were analysed in the intial(preop.), early (one month postop.) & late follow up(six months postop.) for determining the treatment outcome using the ADC values as well as specteroscopic metabolites peaks & ratios. We correlated all the available values in our results including ADC value, NAA, tCho which were discussed both alone and as combined relations and their statistical significance & p values were calculated. Statistically significant results were found in combining diffusion values & MRS findings.

CONTENTS

List of Abbreviations	Ι
List of Figures	IV
List of Tables	VIII
Introduction & Aim of work	
Review of Literature	
Pediatric Brain Tumors	
❖ Pathology & its classification	
❖ Treatment Strategies	
Principles of Magnetic Resonance Imaging Techniques & role to evaluate post treatment sequelae in Pediatric Bra Tumors	
❖ Conventional MRI	
❖ MR Diffusion23	
❖ MR Perfusion26	
❖ MR Spectroscopy	
Conventional and Advanced MRI Features of Pediatric Intracranial Tumors: Supratentorial & Infratentorial Tumors	
Supratentorial Tumors	
 Infratentorial Tumors 	

Patients and methods	55
Results	60
Case presentation	75
Discussion	104
Summary and Conclusion	113
References	115
Arabic summary	120

LIST OF ABBREVIATIONS

AA: Anaplastic Astrocytoma

ADC: Apparent Diffusion Coefficient

AO: Anaplastic Oligodendroglioma

ATRT: Atypical Teratoid Rhabdoid Tumor

BBB: Blood-Brain Barrier

CBV: Cerebral Blood Volume

CBF: Cerebral Blood Flow

CNS: Central Nervous System

CMS; Cerebellar Mutism Syndrome

Cr: Creatine

CSF: Cerebrospinal Fluid

CT: Computed Tomography

DNET: Dysembryoplastic Neuroepithelial Tumor

DT: Diffusion Tensor

DWI: Diffusion weighted Image

fMRI: Functional MR Imaging

FOV: Field Of View

FSE: Fast spin echo

GBM: Glioblastoma Multiforms

Gd-DTPA: Gadopentetate dimeglumine

Gln: Glutamine

Glu: Glutamate

Glx: Total Glutamate_ Glutamine

GTR: gross total resection

HGGs: High-Grade Gliomas

IM: Intramuscular

IV: Intravenous

Lac: Lactate

LGGs: Low Grade Gliomas

IR: Inversion Recovery

LipMM: Lipids and Macromolecules

MMP-2: matrix metalloproteinase-2

MDCT: Multidetector Computed Tomography

MI: Myoinositol

MT: Magnetization Transfer

MR: Magnetic Resonance

MRS: MR Spectroscopy

NAA: N-Acetylaspartate

PDWI: Proton Density-Weighted Image

Ppm: Parts per million

PXA: pleomorphic xanthoastrocytoma

PNET: Primitive Neuroectodermal Tumor

RF: Radiofrequency

ROI: Regions Of Interest

ROC: Receiver operating characteristic

SE: Spin Echo

SI: Signal intensity

SEGA: Subependymal giant cellastrocytoma

SNR: Signal-to-Noise Ratio

SPECT: Single Photon Emission Computed Tomography

SRS: Stereotactic Radiosurgery

STEAM: Stimulated-Echo Acquisition Mode

STR: Subtotal resection

STIR: Short Tau Inversion Recovery

Tau: Taurine

tCho: Total Choline

USA: United State of America

WHO: World Health Organization

LIST OF FIGURES

<u>Fig.1</u>	Comparison of standard and high dose contrast material	21
<u>FIG.2</u>	Effect of MT image on the detection of brain metastasis	22
FIG.3	Schematic illustration shows water molecule movement	23
FIG.4	7-year-old boy with left occipital ganglioglioma	25
<u>FIG.5</u>	PWI in a 5-year-old girl with anaplastic ependymoma	28
<u>Fig.6</u>	Normal MRS	30
<u>Fig.7</u>	Proton MRS (PRESS,TE 144 ms) in medulloblastomas	31
<u>Fig.8</u>	Choline concentration does directly correlate with increased	32
	WHO grade in a broad spectrum of pediatric brain tumors.	
<u>Fig.9</u>	17-year-old boy with intractable seizures secondary to pleomorphic xanthoastrocytoma	36
FIG.10	6-year-old boy with known history of tuberous sclerosis	37

	T	
<u>Fig.11</u>	3-year-old girl who presented with seizures and left hemiparesis. Anaplastic astrocytoma was proven at biopsy.	37
<u>Fig.12</u>	Axial T2-weighted (a) and axial T1-weighted, pre- and postcontrast (b,c) MR images in a 6-year-old boy with a classical presentation of a left cerebellar JPA.	38
<u>Fig.13</u>	6-year-old girl who presented with seizures. Diagnosis is oligodendroglioma	41
Fig.14	2-year-old boy who presented with loss of balance. Diagnosis is primitive neuroectodermal tumor.	42/43
<u>Fig.15</u>	11-year-old girl with seizures secondary to dysembryoplastic neuroepithelial tumor	44
<u>Fig.16</u>	14-year-old boy with biopsy-proven germinoma.	46
<u>Fig.17</u>	Sagittal and axial T2-weighted (a,b) and axial pre-and postcontrast T1-weighted MR images (c,d) of a 6-year-old boy with classical medulloblastoma	49
Fig.18	Axial T2 (a) and contrast enhanced T1-weighted (b) MR images of a 9-year-old boy with diffuse glioma	51

	T2-weighted (a) and sagittal pre- and postcontrast (b,c)	
FIG.19	T1-weighted MR images of a 3-year-old boy with a	53
	classical fourth ventricle ependymoma.	
	1 0	
FIG.20	Axial T2-weighted (a) and contrast enhanced T1-	54
	weighted MR images (b) of a 4-month-old girl with a	
	cerebellar ATRT.	
FIG.21	Pie chart shows location distribution of the lesions.	60
FIG.22	Bar Chart showing frequency & percent of the main	62
	pathological lesions	
FIG.23	Bar Chart showing the frequency & percent of all the	62
	pathological lesions	
	pariotogical resions	
FIG.24	Bar Chart showing frequency & percentages of the Initial	63
<u> 116.24</u>		03
	Contrast Uptake	
Exa 35		
<u>FIG.25</u>	Bar Chart showing percentages of the six months follow	64
	up Contrast Uptake	
FIG.26	3D Cone Chart showing correlation between Outcome &	65
	tumor site	
	Bar Chart showing percentages of Outcome in two years	
FIG.27	follow up	66

<u>FIG.28</u>	Pie chart shows location distribution of the lesions.	74
<u>FIG.29</u>	Case 1; High grade Glioma	75-77
<u>FIG.30</u>	Case 2; Pilocytic Astrocytoma	78-80
<u>Fig.31</u>	Case 3; Craniopharyngioma	31-83
<u>FIG.32</u>	Case 4; Ependymoma	84-86
<u>FIG.33</u>	Case 5; High Grade Astrocytoma	87-89
<u>FIG.34</u>	Case 6; High Grade Astrocytoma	90-92
<u>FIG.35</u>	Case 7; Ependymoma	93-95
<u>FIG.36</u>	Case 8; Medulloblastoma	96-98
<u>FIG.37</u>	Case 9; Ependymoma	99-101
<u>FIG.38</u>	Case 10; Low Grade Glioma	102-
		103

LIST OF TABLES

Table 1	Risk factors that have been investigated in epidemiological	6
	studies of primary brain tumors	
Table 2	Conventional and Advanced MRI Features of Astrocytomas	39
Table 3	Frequency & percentage distribution of the different histopathological types	61
Table 4	Frequency & percent distribution of the main pathological types	61
Table 5	Frequency & Percentages of the Initial Contrast Uptake	63
Table 6	Frequency & Percentages of the one month follow up Contrast Uptake	64
Table 7	Percentages of the six months follow up Contrast Uptake	64
Table 8	Correlation between Outcome & tumor site	65
Table 9	Correlation between Outcome & pathology	66
Table 10	The mean, median and range of the ADC & Spectroscopic values	67
Table 11	P value of Early and late ADC values	68
Table 12	Early and late ADC values	68
Table 13	Initial, Early and late ADC values	69
Table 14	Correlation of ADC values & tumor site	69

Table 15	Examples P value of Early and late Cho/NAA ratios	70
Table 16	Early and late Cho/NAA ratios	70
Table 17	Correlation of Initial measures	71
Table 18	Correlation of Early measures	72
Table 19	Correlation of Late measures	72
Table 20	Correlation of values & outcome	73
Table 21	Outcome in two years follow up	74

INTRODUCTION

Brain tumors during childhood account for 15%-20% of all primary brain tumors. Central nervous system tumors are the second most common pediatric tumor. In most larger series, posterior fossa tumors and supratentorial tumors occur in equal frequency. However, supratentorial tumors are more common in the first two to three years of life, whereas infratentorial tumors predominate from ages 4 to 10 (**Bonavita S., et al, 1999**)

Magnetic resonance (MR) imaging plays an important role in the detection and evaluation of brain tumors. To date, MR imaging has principally served the role of showing the neoplasm, helping distinguish tumors from other pathologic processes and depicting basic signs of tumor response to resection and therapy.

Contrast-enhancing lesions that arise on routine follow-up brain MRI at the site of a previously identified and treated intracranial neoplasm present a significant diagnostic dilemma. Radiation necrosis is the most substantial and most severe form of radiation-induced injury with therapeutic implications. The diagnosis of radiation necrosis on imaging has been challenging, primarily because the pattern of abnormal enhancement closely mimics that of recurrent brain tumor (Hein PA., et al, 2004). The two entities may be distinguished by a brain biopsy, the patient's clinical course, or follow-up imaging.

Among the noninvasive methods that are available for diagnosis include diffusion and perfusion weighted MRI (Yang D., et al, 2002), Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) which has been used in attempts to differentiate tumor from radiation necrosis.

Diffusion-weighted (DW) magnetic resonance imaging, currently the only MR imaging technique that provides information on water diffusion, involves the use of phase defocusing and phase-refocusing gradients to allow evaluation of the rate of microscopic water diffusion within tissues. DW MR imaging has been used to study brain tumors and response to treatment (James M., et al, 2006), and its diagnostic potential and usefulness for obtaining the apparent diffusion coefficient (ADC) have been reported