فقدان القدرة على النطق في مرضى السكتة الدماغية: دور التصوير الوظيفي بالرنين المغناطيسي في تقييم استعادة الوظيفة

> بحث مقدم من *الطبيب/ نادر زخاري رزق*

توطئة للحصول على درجة الدكتوراه في الأشعة التشخيصية

المشرفون

الاستاذ الدكتور/ جانيت بشرى حنا أستاذ الأشعة التشخيصية كلية الطب-جامعة عين شمس

الاستاذ الدكتور/ ياسر عبد العظيم عباس استاذ الأشعة التشخيصية كلية الطب-جامعة عين شمس

الاستاذ الدكتور/ دونالد لي

أستاذ اشعة الجهاز العصبي كلية الطب-جامعة غرب اونتاريو

دكتور/ احمد سميرابراهيم مدرس الأشعة التشخيصية كلية الطب-جامعة عين شمس

> كلية الطب جامعة عين شمس 2009

Aphasia in stroke patients: Role of functional magnetic resonance imaging (fMRI) in assessment of recovery

A thesis submitted for partial fulfillment of M.D. degree in radiodiagnosis

Presented by

Nader Zakhari Rizk M.Sc. radiodiagnosis

Under Supervision of

Professor Doctor/ Jannette Boshra Hanna

Professor of radiodiagnosis Ain Shams University

Professor Doctor/ Yasser Abdel Azeem Abbas

Professor of radiodiagnosis Ain Shams University

Professor Doctor/ Donald Lee

Professor of Neuroradiology Western Ontario University

Doctor/ Ahmed Samir Ibrahim

Lecturer of radiodiagnosis Ain Shams University

Faculty of Medicine Ain Shams University 2009

Acknowledgment

I would like to express my deepest gratitude to **Prof. Dr. Jannette Boshra Hanna**, professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her supervision, continuous care and encouragement.

I am also greatly indebted to **Prof. Dr. Yasser Abdel Azeem Abbas**, professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for his sincere supervision, kindness and continuous support throughout this work.

I am also very greatful to **Prof. Dr. Donald Lee** Professor of Neuroradiology, University of
Western Ontario for his generous help, direction and
guidance throughout the work.

I would like to express my deep gratitude to **Dr. Ahmed Samir Ibrahim**, lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University for his generous help, supervision and encouragement.

Nader Zakhari

LIST OF ABBREVIATIONS

ACA : anterior cerebral artery
ASL : American Sign Language

AVM : arteriovenous malformation **BOLD** : blood-oxygen-level-dependent

CBF : cerebral blood flowCBV : cerebral blood volume

CMRO2 : cerebral blood oxygen consumption

CNR : Contrast to Noise RatioCVA : cerebrovascular accidents

DeoxyHb: deoxy hemoglobin

DSA : digital subtraction angiogram
 DWI : Diffusion weighted images
 ECS : electrocortical stimulation
 EEG : electro-encephalography

EHI : Edinburgh Handedness Inventory

EPI : echo-planar imaging

FAS: Foreign Accent Syndrome

fcMR : functional connectivity MR imaging

fig. : figure

fMRI : functional magnetic resonace imaging

FOV : field of view HG : Heschl's gyrus

IOSs : intrinsic optical signals

LI : laterality index LQ : laterality quotient

MCA : Middle cerebral ArteryMEG : magneto-encephalography

MNI : Montreal Neurological Institute

MR : magnetic resonace

MRI : magnetic resonace imagingMTA : Mixed Transcortical Aphasia

NO : nitric oxide

PCA : posterior cerebral artery

PET : positron emission tomography

PI : Parallel imaging
PT : planum temporale
RF : radiofrequency
ROIs : regions of interests
RTMS : Repetitive TMS

SIM : signal intensity maps

SLT : speech and language therapySMA : supplementary motor area

SNR : signal-to-noise ratio

SPM2 : Statistical Parametric Mapping version 2

T : Tesla

TCM : Transcortical MotorTCS : Transcortical sensory

TDCS: Transcranial direct current stimulation

TE: Echo Time

TMS : Transcranial magnetic stimulation

TR : Repetition Time

LIST OF CONTENTS

Introduction	1
Review of literature	
Anatomy	3
Pathology	21
Technique	39
Patients and Methods	98
Results	109
Illustrative Cases	131
Discussion	155
Summary and conclusion	172
References	177
Arabic Summary	179

LIST OF FIGURES

Fig. 1: Main brain regions involved in language processing.	
Fig. 2: Classical model of the language system.	4
Fig.3: The Pars opercularis, Pars triangularis and pars	
orbitalis of the left inferior frontal gyrus in MR data	
set of a healthy brain.	5
Fig. 4: Diagram of the brain showing the classic language	
areas, numbered according to the scheme of	
Brodmann.	7
Fig. 5: Reconstructions of left and right arcuate fasciculus.	8
Fig. 6: Medial sagittal view of the right hemisphere.	11
Fig. 7: Axial fMR maps of SMA activations.	12 14
Fig. 8: Schematic representation of auditory pathways.	
Fig. 9: Identification and labelling of HG and PT.	15
Fig.10: Group average activation maps during a semantic	
task.	18
Fig 11: Language mapping using both MEG(right) and fMRI	
(left) in the same subject using identical behavioral	
paradigms.	
Fig 12: The haemodynamic variables during neuronal	40
activity.	40 43
Fig 13: Schematic of the transformation of neural activity	
elicited by a stimulus.	45
Fig. 14: Some of the suspected mediators of neurovascular	40
coupling.	48
Fig. 15: Schematic representation of the common features of	
the fMRI BOLD response to a period of neuronal	40
stimulation.	49
Fig. 16: Geometric distortion of the anterior aspect of the brain.	53
T 11 1	54
Fig. 19: affect of AVM on the POLD girnel	
Fig. 18: effect of AVM on the BOLD signal.	55
Fig. 19: Functional maps at the same anatomic level, for a	
patient with occlusion of the right internal carotid	57
artery. Fig. 20: Data from fMRI study at 1.5T and 3T comparing	31
BOLD signal intensity at different TEs.	60
Fig. 21: Comparison of susceptibility artifacts at the skull	00
base for 1.5T and 3T at different TEs.	61
base for 1.51 and 51 at different 1Es.	OI

Fig. 22: Comparison of different voxel size regarding	
susceptibility artifacts at 3T.	62
	02
Fig. 23: Schematic representation of a block design	66
experiment.	66
Fig. 24: Schematic representation of a block design (A) and	67
an event related (B) fMRI paradigms.	67
Fig. 25: (a) Silent gap acquisition (b) Continuous acquisition.	69
Fig. 26: A series of tasks performed to identify critical	
functional areas. superimposed on high-resolution	70
anatomic images.	70
Fig. 27: Somatotopic organization of the primary motor	
cortex mapped using fMRI in a healthy subject.	71
Fig. 28: Activations in the anterior hippocampus.	72
Fig. 29: Schematic illustrates the verbal fluency-verb	
generation paradigm, with suggested responses to	
the presented nouns shown in text bubbles.	74
Fig. 30: Healthy control subjects activation during verb	
generation task.	
Fig 31: fMRI group activation map for 14 children and	74
young adults performing story processing task.	78
Fig 32: fMR images in a patient with a large left frontal	
tumor from word generation task.	85
Fig. 33: fMRI during a verbal fluency task in a patient with a	
low-grade tumoral mass in the left supramarginal	
and angular gyri.	86
Fig. 34: fMRI study of a patient with a low grade tumor in	
the primary motor cortex region.	87
Fig. 35: Functional activation maps in aphasic subjects	
performing verb generation tasks.	93
Fig. 36: Traditional fMRI analysis and BOLD noise.	95
Fig. 37: Generation of resting-state correlation maps.	96
Fig. 38: Average LI for different ROI for patients and	
controls.	110
Fig. 39: Average LI for different ROIs for patients with and	-
without evidence of complete recovery.	111
Fig. 40: Volumes of activations in patients and controls for	
the frontal ROIs.	116
Fig. 41: Volumes of activations in patients and controls for	
the temporal ROIs.	117
Fig.42: Volumes of activations for the frontal ROIs for	
patients with and without evidence of complete	118
patients with and without evidence of complete	110

recovery.	
Fig.43: Volumes of activations for the temporal ROIs in patients with and without evidence of complete	
recovery.	119
Fig. 44: Frontal laterality changes in patients with and	117
without evidence of recovery.	123
Fig. 45: Temporal laterality changes in patients with and	123
without evidence of recovery.	124
Fig. 46: Average LI values changes in patients with and	
without evidence of recovery.	124
Fig.47: Average frontal volume changes in patients with and	
without evidence of recovery.	127
Fig. 48: Frontal volume changes in patients with and without	
evidence of recovery.	128
Fig. 49: Average temporal volume changes in patients with	
and without evidence of recovery.	129
Fig. 50: Temporal volume changes in patients with and	
without evidence of recovery.	130
Fig. 51: Structural MR images of patient 1.	131
Fig. 52: fMR images of temporal ROI activity in patient 1.	132
Fig. 53: fMR images of frontal ROI activity in patient 1.	132
Fig. 54: Structural MR images of patient 2.	133
Fig. 55: fMR images of frontal ROI activity in patient 2.	134
Fig. 56: fMR images of temporal ROI activity in patient 2.	134
Fig. 57: Structural MR images of patient 3.	135
Fig. 58: fMR images of frontal ROI activity in patient 3.	136
Fig. 59: fMR images of temporal ROI activity in patient 3.	136
Fig. 60: Structural MR images of patient 4.	137
Fig. 61: fMR images of frontal ROI activity in patient 4.	138
Fig. 62: fMR images of temporal ROI activity in patient 4.	138
Fig. 63: Structural MR images of patient 5.	139
Fig. 64: fMR images of frontal ROI activity in patient 5.	140
Fig. 65: fMR images of temporal ROI activity in patient 5.	140
Fig. 66: Structural MR images of patient 6.	141
Fig. 67: fMR images of temporal ROI activity in patient 6.	142
Fig. 68: fMR images of frontal ROI activity in patient 6.	142
Fig. 69: Structural MR images of patient 7.	143
Fig. 70: fMR images of initial frontal activity in patient 7.	144
Fig. 71:fMR images of initial temporal activity in patient 7.	144

Fig. 72: Follow up fMR images of frontal ROI activity in	
patient 7.	145
Fig. 73:Follow up fMR images of temporal activity in patient	
7.	145
Fig. 74: Structural MR images of patient 8.	146
Fig. 75: fMR images of initial frontal activity in patient 8.	147
Fig. 76:fMR images of initial temporal activity in patient 8.	147
Fig. 77: Follow up fMR images of frontal ROI activity in	
patient 8.	148
Fig. 78: Follow up fMR images of temporal activity in	
patient 8.	148
Fig. 79: Structural MR images of patient 9.	149
Fig. 80: fMR images of initial frontal activity in patient 9.	150
Fig. 81:fMR images of initial temporal activity in patient 9.	150
Fig. 82: Follow up fMR images of frontal ROI activity in	
patient 9.	151
Fig. 83: Follow up fMR images of temporal activity in	
patient 9.	151
Fig. 84: Structural MR images of patient 10.	152
Fig. 85: fMR images of initial frontal activity in patient 10.	153
Fig. 86:fMR images of initial temporal activity in patient 10.	153
Fig. 87: Follow up fMR images of frontal ROI activity in	
patient 10.	154
Fig. 88: Follow up fMR images of temporal activity in	
patient 10.	154

LIST OF TABLES

Table 1	The aphasia syndromes.	24
Table 2	Clinical variables influencing stroke recovery.	36
Table 3	Overview of commonly used fMRI language	
	paradigms in clinical practice.	73
Table 4	Stroke location in the group of patients.	100
Table 5	Clinical syndromes in the group of patients.	100
Table 6	Average LI for frontal and temporal ROI for patients and controls and their statistical	
	significance.	109
Table 7	Volumes of activations in patients and controls for the frontal ROIs and their statistical	
	significance.	115
Table 8	Volumes of activations in patients and controls	
	for the temporal ROIs ad their statistical	
	significance.	117

I-INTRODUCTION:

Stroke is a major cause of disability in adults. Aphasia is observed with a frequency ranging from 21% to 38% at the acute stage. (*Godefroy et al.*; 2002)

Intensive rehabilitation interventions are being used more commonly as delivery of post-stroke care improves and can reduce long-term disability. (*Johansen-Berg et al.*; 2002)

Patients with aphasia following damage to the language zones of the brain, due to traumatic or vascular lesions, undergo some degree of recovery over time. (Musso et al.; 1999)

Recovery from vascular aphasia implies functional reorganization of the language system in the brain. (*Fernandez et al.*; 2004)

Functional magnetic resonance imaging (fMRI) provides a mechanism for non invasive investigation of brain function. It combines detailed anatomical information with physiological information to create a structural and functional model of a person's brain. (*Jones et al.*; 1998)(Krings et al.; 2001)

Owing to its noninvasive nature, fMRI which uses blood oxygen level-dependent (BOLD) imaging has been used extensively in all facets of human brain mapping and holds great potential for evaluation of cerebrovascular disease. (*Carusone et al.*; 2002)

fMRI offers a promising, objective approach for specifically identifying changes in brain activity potentially

responsible for recovery of function after stroke (Johansen-Berg et al.; 2002)

fMRI is a relatively new and effective method for the study of language processing. (*Pillai et al.*; 2004)

AIM OF THE WORK

The aim of this study is to evaluate the role of functional magnetic resonance imaging (fMRI) in the assessment of recovery of aphasia in stroke patients.

<u>ANATOMY</u>

Anatomy of language areas

There has been considerable difference of opinion concerning the status of cortical language areas, and objection has been made to calling them "centers," for they do not represent histologically circumscribed structures of constant function. Moreover, a competent neuroanatomist would not be able to distinguish the cortical language areas microscopically from the cerebral cortex that surrounds them. (*Ropper and Brown*; 2005)

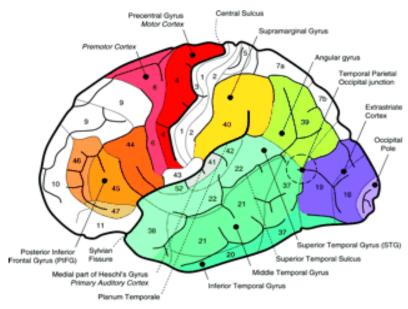


Fig. 1: Main brain regions involved in language processing. Lateral view of the left hemisphere of the human brain. Numbers indicate Brodmann's areas (BA) separated by dotted lines. (*Démonet, Thierry and Cardebat; 2005*)

The classic model of language processing:

The classic model of language processing (Fig 2) consists of a frontal expressive or motor area (Broca area),

a posterior receptive language center (Wernicke area), and a white matter fiber tract (arcuate fasciculus) interconnecting the two. This model originated from lesion studies that correlated neuropathologic brain changes with different kinds of language disorders. (*Naidich et al.*; 2001)

Broca's area processes the information rePeived from Wernicke's area into a detailed and coordinated pattern for vocalization and then projects the pattern via a speech articulation area in the insula to the motor cortex, which initiates the appropriate movements of the lips, tongue, and larynx to produce speech. (*Ganong*, 2005)

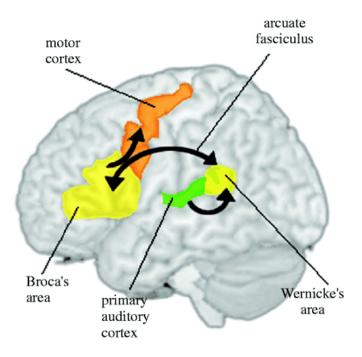


Fig. 2: Classical model of the language system. (*Tyler and Marslen-Wilson*; 2008)

Broca's area:

Broca's area is classically located in the pars opercularis and the posterior portion of the pars triangularis