Evaluation of Osteoconductivity and Bioactivity of a Bioceramic Sealer

Thesis submitted to Endodontic Department, Faculty of Dentistry, Ain Shams University.

For

Partial fulfillment of requirements of the Doctorate Degree in Endodontics.

By

Mohamed Ahmed Elsayed Mousa Assistant lecturer of Endodontics, Assiut University

(B.D.S, 2003) (M.Sc, 2012)

Endodontic Department Faculty of Dentistry Ain Shams University 2017

Under Supervision of

Prof.Dr. Ihab Elsayed Hassanien

Chairman of Endodontic Department
Professor of Endodontics
Faculty of Dentistry
Ain Shams University

Prof. Dr. Mohamed Abdelrahman Semieka

Professor and head of veterinary surgery department Faculty of veterinary medicine Assiut University

Dr. Abeer Abd Elhakim Elgendy

Associated Professor of Endodontics Faculty of Dentistry Ain Shams University

List of content

List of	content	i
List of	tables	v
List of	figures	vii
List of	abbreviations	xviii
Introdu	action	1
Review	of literature	3
I.A.	Bioceramic sealers	3
I.B.	Osteoconductivity of Calcium Silicate based	
bioce	ramic materials	4
I.C.	Bioactivity of Calcium Silicate based bioceramic	
mater	ials	22
Aim of	the study	35
Materi	als and Methods	36
Tested	materials	36
Method	ds:	37
I. Fi	rst part: (Animal study)	37
I.A.	Animal selection	
I.B.	Procedure	37
I.C.	Post-operative care	45
I.D.	Sacrificing animals	45
I.E.	Sample preparation for histological analysis	45
I.F.	Evaluation of osteoconductivity	48
II S	econd Part: Bioactivity (in vitro)	63

II.A.	Sample preparation	63
II.B.	Sample classification (Figure 27)	63
II.C.	Sealer Insertion:	64
II.D.	Samples preservation	64
II.E.	Evaluation of bioactivity	67
Results		73
I. Fir	est Part (Osteoconductivity)	73
I.A.	Tissue reaction to tested materials:	73
I.B.	Immunohistochemical results (osteopontin	
expres	ssion)	92
II. Sec	cond Part (Bioactivity)1	01
II.A. surfac	Surface characterization and globular precipitations e area (SEM)	01
II.B.	Results of elemental microanalysis (EDX)1	17
Discuss	ion1	32
Summa	ry1	53
Conclus	sion1	56
Referen	nces1	57

List of tables

Table 1: tested materials and their composition. 36
Table 2: The mean \pm SD values and results of comparison between inflammatory cells count in the three groups at two time intervals75
Table 3: The mean \pm SD values of the overall comparison in the inflammatory cell count among the three groups
Table 4: The mean \pm SD values, and results of the comparison among the percentages of new bone formation in the three groups at two time intervals.
Table 5: The mean \pm SD values, and results of overall comparison among the percentages of bone formation in the three groups87
Table 6: The mean \pm SD values, and results of comparison between percentages of osteopontin in the three groups at two time points94
Table 7: The mean \pm SD values, and results of overall comparison between percentages of osteopontin in the three groups96
Table 8: The mean \pm SD values and results of comparison between percentage of globular precipitation surface area in the two groups at three time intervals.
Table 9: The mean values ± SD values and results of overall comparison between percentage of surface area covered by globular precipitation in the two groups

Table 10: The mean± SD values and results of comparison between ca
content in surface apatite precipitations in the two groups at three time
points
Table 11: The mean \pm SD values and results of overall comparison
between Ca content in surface apatite precipitations of the study groups.
122
Table 12: The mean \pm SD values and results of comparison between
Ca/P ratio in surface apatite precipitations in the two groups at three
time intervals
Table 13: The mean \pm SD values and results of overall comparison
between Ca/P ratios in surface apatite precipitations of the two groups.

List of figures

Figure 1: Diagram of dog mandible, showing second, third, and fourth
premolars included in this study40
Figure 2: Preoperative x ray examination, access cavity preparation, and
induction of periapical pathosis41
Figure 3: Working length determination, apical perforation and root canal preparation
Figure 4: Schematic diagram showing classification of experimental
groups43
Figure 5: Obturation material was applied according to compared study
groups44
Figure 6: Postoperative radiograph showing apical sealer buff44
Figure 7: Samples preparation
Figure 8: High-resolution digital camera, mounted on a light microscope
connected to computer supplied with image analysis software50
Figure 9: Inflammatory cells were measured digitally by the Image
Analysis software Image J
Figure 10: An inflammatory cell was selected using polygon selections
tool

Figure 11: Measuring step was repeated for five cells with different sizes
to identify the average size51
Figure 12: Images were transformed in image J into 8-bit type52
Figure 13: The Adjust/Threshold function was used to identify the area
that was to be measured
Figure 14: The Analyze Particles function53
Figure 15: Dialog box was used to configure the circularity value and
particle size range
Figure 16: Threshold / Apply function to convert the image to black and
white54
Figure 17: Process/Binary/Watershed function
Figure 18: The Show/Outlines and Summarize functions was used to
obtain the count and area fraction of the inflammatory cells. Note the
original image on the right without optimization, and on the left after
optimization for more accuracy55
Figure 19: A rectangular field within the section measuring 1360800 pixel
57
Figure 20: The region of interest (ROI) manager was used to save field
dimensions57
Figure 21: Using duplicate option, ROI was processed to a new separate
image

Figure 22: Wand tracing tool was used to automated selection of new
bone and bone matrix, The percentage area was calculated58
Figure 23: Positive osteopontin immunolabeling appears in red brownish
color61
Figure 24: A diagram showing stained cell-collagen-osteopontin bond61
Figure 25: Immunohistochemiacl stained tissue with osteopontin appears
at bone border in the periapical defect62
Figure 26: Freehand selection tool was used to select positively stained
cells and collagen matrix area
Figure 27: Study design and classification of study groups65
Figure 28: Sealer after injection into the prepared root canal space66
Figure 29: Specimens were hold in a tightly sealed labeled polyethylene
tubes and incubated at 37 °C66
Figure 30: Specimens during sputter-coated with gold69
Figure 31: Specimens after gold sputtered69
Figure 32: Images were transferred by ImageJ into 8-bit type70
Figure 33: Adjust/Threshold function was used to identify areas to be
measured70
Figure 34: Create Selection function from the Edit/Selection menus was
then used to delineate the areas identified in the previous step71
Figure 35: Elemental atomic weight and ratio obtained by EDX71

Figure 36: Bar chart representing the effect of time on inflammatory cell
count in the three study groups76
Figure 37: Bar chart representing the effect of material on inflammatory
cell count after the two time intervals76
Figure 38: Bar chart representing over all inflammatory cell count in the
study groups
Figure 39: Photomicrograph (H&E staining) of a section in Total Fill BC;
one month samples, showing fibroblasts (black arrow) and inflammatory
cell count (blue arrow) (x40)78
Figure 40: Photomicrograph (H&E staining) of a section in Total Fill BC;
four months samples, showing root apex (blue arrow), osteocytes in a
newly formed osteoid tissue (black arrow) and almost disappear of
inflammatory cells (x20)
Figure 41: Photomicrograph (H&E staining) of a section in Total Fill BC
;four months samples, showing root apex (blue arrow) and spindle shaped
undifferentiated mesenchymal cells in newly formed tissue (black arrow)
(x40)79
Figure 42: : Photomicrograph (H&E staining) of a section in Total Fill BC
;four months samples, showing traces of material (black arrow) with no
signs of inflammatory tissue reaction (blue arrow) (x20)80
Figure 43: Photomicrograph (H&E staining) of a section in MTA Fillapex
: one month samples, showing high inflammatory cell count (x40)80

Figure 44: Photomicrograph (H&E staining) of a section in MTA Fillapex
four months samples, showing osteocytes in a newly formed bone
surrounded by chronic inflammatory cell (blue arrow) (x40)81
Figure 45: Photomicrograph (H&E staining) of a section in MTA Fillapex
; four months samples, showing perforated apex with some resorption and
remodeling (black arrow) and chronic inflammatory cells (blue arrow).
(x20)81
Figure 46: Photomicrograph (H&E staining) of a section in Positive
control group ;one month samples, showing highly inflammatory reaction
(blue arrow) related to root apex with active resorption areas (black
arrow) (x10)
Figure 47: Photomicrograph (H&E staining) of a section in positive
control group; four months samples, showing abundant chronic
inflammatory cells (x40)
Figure 48: Bar chart representing effect of time on percentage of new
bone formation at the three groups85
Figure 49: Bar chart representing effect of material on percentage of new
bone formation at two time intervals86
Figure 50: Bar chart representing over all percentage of bone formation in
the study groups87
Figure 51: Photomicrograph (Goldner's trichrome staining) of a section
in Total Fill BC; one month samples, showing the newly formed bone in
the apical defect (blue arrow) surrounded by the old bone (black arrow)
(x20)

Figure 52: Photomicrograph (Goldner's trichrome staining) of a section
in Total Fill BC;one month samples, showing island of newly formed
bone in green color (black arrow)(x40)
Figure 53: Photomicrograph (Goldner's trichrome staining) of a section in
Total Fill BC; four months samples, showing that the newly formed
mineralized tissue was noted in close contact with the apex, surrounded
by old bone (x20)89
Figure 54: Photomicrograph (Goldner's trichrome staining) of a section in
MTA Fillapex; one month samples, showing the newly formed bone
(black arrow) in the apical defect surrounded by old bone(blue arrow)
(x20)89
Figure 55: Photomicrograph (Goldner's trichrome staining) of a section in
MTA Fillapex; one month samples, showing the newly formed bone
(black arrow) (x40)90
Figure 56: Photomicrograph (Goldner's trichrome staining) of a section in
MTA Fillapex; four months samples, showing the newly formed bone
(blue arrow) surrounded by mineralized collagen matrix (black arrow)
(x40)90
Figure 57: Photomicrograph (Goldner's trichrome staining) of a section in
positive control group; one month samples, showing root apex (blue
arrow) and remodeled old bone trabeculae (black arrow) (x40)91
Figure 58: Photomicrograph (Goldner's trichrome staining) of a section in
positive control group; four months samples, showing the apical defect
(blue arrow) surrounded by newly mineralized tissue (black arrow)
(x20)

Figure 59: Bar chart representing effect of time on percentage of
osteopontin expression in the three groups95
Figure 60: Bar chart representing effect of material on percentage of
osteopontin expression at the two time intervals95
Figure 61: Bar chart representing over all percentage of osteopontin in the
study groups97
Figure 62: Photomicrograph (antiosteopontin staining) of a section in
Total Fill BC; one month samples, showing extracellular osteoponting
expression (black arrow) in localized areas around the newly formed bone
(blue arrow) (x40)
Figure 63: Photomicrograph (antiosteopontin staining) of a section in
Total Fill BC; four months samples, showing intense osteoponting
expression (black arrow) (x40)98
Figure 64: Photomicrograph (antiosteopontin staining) of a section in
MTA Fillapex; one month samples, showing brownish stained
osteopontin (black arrow) around the newly formed bone (blue arrow)
(x40)98
Figure 65: Photomicrograph (antiosteopontin staining) of a section in
MTA Fillapex; four month samples, showing mild extracellular
osteopontin expression (black arrows) (x40)99
Figure 66: Photomicrograph (antiosteopontin staining) of a section in
positive control group; one month samples, showing resorption of root
(black arrow) and bone tissue with few osteopontin stained areas was
observed (x10) 99

Figure 67: Photomicrograph (antiosteopontin staining) of a section in
positive control group; one month samples, showing low extracellular
osteopontin expression (black arrows) (x40)100
Figure 68: Photomicrograph (antiosteopontin staining) of a section in
positive control group; one month samples, showing moderate
extracellular osteopontin expression (black arrows) (x40)100
Figure 69: Bar chart representing the effect of time on percentage of
globular precipitation surface area in the study groups105
Figure 70: Bar chart representing the effect of material on percentage of
globular precipitation surface area in the three time intervals105
Figure 71: Bar chart representing overall percentage of surface area
covered by globular precipitation in study groups
Figure 72: Total Fill BC Sealer SEM image (x120 magnification) after
one day of soaking showing surface precipitates107
Figure 73: Total Fill BC Sealer SEM image (x1000 magnification) after
one day of soaking showing surface precipitates108
Figure 74: Total Fill BC Sealer SEM image (x1000 magnification) after
one day of soaking showing surface precipitates at dentin sealer interface.
Figure 75: SEM image of Total Fill BC Sealer (x160 magnification) after
one week of soaking showing heavy precipitation and post setting sealer
expansion