BIODIVERSITY OF ENDOMYCORRHIZAL FUNGI IN RELATION TO ROOT INFECTING FUNGI

By

SOZAN EID MOHAMED EL-ABEID

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams Univ., 1997 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams Univ., 2005

THESIS

Submitted in partial fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY

In Agricultural Science (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Cairo University
EGYPT

2013

APPROVAL SHEET

BIODIVERSITY OF ENDOMYCORRHIZAL FUNGI IN RELATION TO ROOT INFECTING FUNGI

Ph.D. Thesis
In
Agric. Sci. (Plant Pathology)

By

SOZAN EID MOHAMED EL-ABEID

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams University, 1997 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams University, 2005

APPROVAL COMMITTEE
Dr. METWALLY MOHMED BARAKA
Prof. of Plant Pathology, Fac. of Agric., Suez Canal University.
Dr. MAGDY MOHAMED SABER
Prof. of Plant Pathology, Fac. of Agric., Cairo University.
D. MOUCTAEA CAVED MANGOUD
Dr. MOUSTAFA SAYED MANSOUR
Prof. of Plant Pathology, Fac. of Agric., Cairo University.
Dr. KAMEL KAMAL ALI SABET
DI. KAWIEL KAWIAL ALI SADEI
Prof. of Plant Pathology, Fac. of Agric., Cairo University.

Date: / / 2013

SUPERVISION SHEET

BIODIVERSITY OF ENDOMYCORRHIZAL FUNGI IN RELATION TO ROOT INFECTING FUNGI

Ph.D.Thesis In Agricultural Sci. (Plant Pathology)

By SOZAN EID MOHAMED EL-ABEID

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams University, 1997 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams University, 2005

SUPERVISION COMMITTEE

Dr. KAMEL KAMAL ALI SABET
Professor of Plant Pathology, Fac. Agric., Cairo University

Dr. MOUSTAFA SAYED MANSOUR Professor of Plant Pathology, Fac. Agric., Cairo University

Dr. SAFWAT ABD EL-HAMEED EL-HADAD Chief Researcher of Plant Pathology, Plant Pathology Institute, ARC, Giza

Name of Candidate: Sozan Eid Mohamed El-Abeid Degree: Ph.D.

Title of Thesis: Biodiversity of Endomycorrhizal Fungi in Relation to Root

Infecting Fungi.

Supervisors: Dr. Kamel Kamal Ali Sabet

Dr. Moustafa Sayed mansour

Dr. Safwat Abd El-Hameed El-Hadad

Department: Plant Pathology **Approval:** / /2013

ABSTRACT

This study was planned to investigate the biodiversity of Vesicular arbuscular mycorrhizal (VAM) fungi extracted from different crops in Egypt. The highest number of VAM spores was collected from summer crops than that collected from winter season. Adding of rock phosphate or Pseudomonas fluorescens to Glomus spp. increased all growth parameters of pepper plants compared with Glomus spp. alone. Moreover, mixing of sclerotia of Sclerotium rolfsii with spores of Glomus spp. decreased the severity of root- and stem- rot disease on pepper plants; beside all growth parameters of pepper plants were increased. Identification of *Glomus* spp. was carried out using DNA primers and fatty acids. Isolates 2,3,4 and 7 of Glomus spp. were identified as G.etunicatum using VANS1/VALETC. Palmitic acid (16:0), Oleic acid (cis18:1n9) and Stearic acid (18:0) were the dominant fatty acid of the Glomus spp., while the dominant fatty acids of G. etunicatum isolates were myristic acid (14:0), palmitoleic acid (16:1n7 cis), archidic acid (20:0), palmitic acid (16:0), oleic acid (cis18:1n9) and stearic acid (18:0).

Key words: pepper, *Glomus* spp., *Sclerotium rolfsii*, stems rot, DNA marker and fatty acid.

ACKNOWLEDGMENT

First I would like to express my deepest gratitude to Prof. **Dr. Kamel Kamal Sabet,** Professor of Plant Pathology, Faculty of Agriculture, Cairo University for his continuous and generous support, and for inspiration all the time.

I also wish to thank **Dr. Moustafa S.Mansour**, Professor of Plant Pathology, Faculty of Agriculture, Cairo University for his effort and help that made this work achieved.

I also wish to thank **Dr. Safwat El-Hadad** Chief Researcher, Mycology Res. & Disease Survey Dept., ARC. for his kind help.

I am sincerely grateful to **Dr. Ebtisam El-Sherif**, Chief Researcher, Mycology Res. & Disease Survey Dept., ARC, for her help and support.

Special thanks are also due to **Dr. Saad El-Gantiry**, Chief Researcher, Mycology Res. & Disease Survey Dept., ARC for his help and support

I would like also to thank **Dr. Abeer M. Shaltout**, Senior Researcher, Mycology Res. & Disease Survey Dept., ARC, for her effort and help and **Dr. Maali S. Soliman and my girlfriend Huda Z. A. Zoher** for their support and constant cooperation. Thanks are also due to all department members of Mycology Res. & Disease Survey for their cooperation that I always appreciate.

I would like also to thank **Dr. Noha F. El-badawy**, Researcher, Central Laboratory of Biotechnology, ARC for her support and valuable contributions to this work.

Finally, My Thanks and gratitude are also to all the staff members at the Plant Pathology Dept. Faculty of Agric., Cairo University, for sharing their knowledge and experience with us.

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
MATERIALS AND METHODS
1. Occurence extraction, counting, purification and
maintenance of Vesicular arbuscular mycorrhizal
(VAM) fungi from sand and clay soils collected from 4
governorates of Egypt
2. Occurrence of mycorrhizal fungi species in soil collected
from different governorates of Egypt
3. Identification of <i>Glomus</i> spp.
4. Effect of Solubilization Phosphate from rock phosphate
by Glomus spp
5. Effects of synergism between <i>Pseudomonas fluorescens</i>
and Glomus spp. on growth parameters of
pepperplants
6. Host reaction to Glomus spp
7. Effect of <i>Glomus</i> spp. on survival of pepper seedlings
8. Pathogenicity test of Sclerotium rolfsii.
9. Effect of <i>Glomus</i> spp. on the incidence of pepper stem
and root – rot caused by Sclerotium rolfsii
10. Differentiation of Glomus spp. isolates using
polymorphic DNA markers
11. Differentiation between Glomus species using fatty acid
methyl ester profiles
12. Statistical analysis
RESULTS
1. Occurence extraction, counting, purification and
maintenance of Vesicular arbuscular mycorrhizal
(VAM) fungi from sand and clay soils collected from 4
governorates of Egypt
2. Occurrence of mycorrhizal fungi species in soil collected
from different governorates of Egypt
3. Identification of <i>Glomus</i> spp.

4. Effect of Solubilization Phosphate from rock phosphate	
by Glomus spp.	
5. Effects of synergism between <i>Pseudomonas fluorescens</i> and <i>Glomus</i> spp. on growth parameters of pepper	
plants	
6. Host reaction to Glomus spp	•
7. Effect of <i>Glomus</i> spp. on survival of pepper seedlings	
8. Pathogenicity test of Sclerotium rolfsii	
9. Effect of <i>Glomus</i> spp. on the incidence of pepper stem and root – rot caused by <i>Sclerotium</i> rolfsii	
10. Differentiation of <i>Glomus spp.</i> isolates using polymorphic DNA markers	
11. Differentiation between <i>Glomus</i> species using fatty acid methyl ester profiles	1
DISCUSSION	
SUMMARY	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLE

No.	Title	Page
1.	Occurrence of vesicular arbuscular mycorrhizal (VAM) fungi from sand and clay soils collected from 4 governorates of Egypt during summer	
	season	40
2.	Occurrence of vesicular arbuscular mycorrhizal (VAM) fungi from sand and clay soils collected from 4 governorates of Egypt during winter	41
3.	Occurrence of mycorrhizal fungi species in 100g soil collected from four governorates of Egypt.	41
4.	Characteristics of some Glomus spp., isolated from four Governorates in Egypt	44
5.	Differentiation among different Glomus spp. using and uptaking rock phosphate.	46
6.	Differentiation among Glomus spp. in uptaking rock phosphate and their effect on growth parameters of pepper plants after three months of inoculation	48
7.	Effects of synergism between <i>Pseudomonas</i> fluorescens and Glomus spp. on growth parameters of pepper plants	49
8.	Effect of <i>Glomus</i> spp. on growth parameters of six different plants after 45 days	53
9.	Presented of hyphae (H) and vesicles (V) of Glomus spp. In roots of plants after (15, 30 and 45 days)	55
10.	Effect of Glomus spp. on survival of pepper plants	59
11.	Pathogenicity of different S. rolfsii isolates on pepper plants after 90days	60
12.	Effect of treatment with <i>Glomus</i> spp. on disease severity of sclerotium root – rot of pepper plants	62
13.	Effect of <i>Glomus</i> spp. on growth parameters of pepper plants infected with <i>S. rolfsii</i>	64
14.	The total methyl esters fatty acids in <i>glomus</i> isolates on root of Sudan grass	69