AUTOLOGUS TRANSPLANTATION OF BONE MARROW STEM CELLS IN PATIENTS WITH RENAL FAILURE

Thesis

Submitted for partial fulfillment of the master degree in clinical & chemical pathology

By Wessam Mohammed Hafez (M.B.B.Ch.)

Supervision

Prof. Dr Hala Gabr

Prof. of Clinical & chemical Pathology, Cairo University.

Prof.Dr Hanan Raslan

Prof. of Clinical & chemical Pathology, Cairo University.

> Faculty of Medicine Cairo University 2009

بسم الله الرحمن الرحيم

"قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم"

صدق الله العظيم (سورة البقرة الايه رقم 32) Acknowledgment

ACKNOWLEDGEMENT

First of all, I always feel indebted to ALLAH whose blessings can not be counted and who gave me the power to finish this thesis.

Then I would like to express my deepest appreciation and gratitude to Prof. **Dr. Hala Gabr** Professor of clinical Pathology, Cairo University, for her wise guidance and kind support during this work.

I am indebted to Prof. Hanan Raslan professor of Clinical pathology, Cairo University for her encouragement and close supervision.

I am also indebted to Dr. Rania Zayed Lecturer of Clinical pathology, Cairo University for her encouragement and close supervision.

Also I would like to thank Dr. Amr Nasef Lecturer of Interventional Radiology, Cairo University for his care and effort to finish this work.

I would like to dedicate my work to my father, my mother and my husband for their encouragement, help and support that enabled me to finish this thesis.

ABSTRACT

Stem cells are non-specialized cells that have the capacity to self-renew and to differentiate into many different cell types when subjected to the right biochemical signals. MSC were separated from bone marrow aspirate of the chronic renal failure patients using their property of plastic adhesion and then injected into both renal arteries of the same patients. Follow-up of the patients showed improvement in renal functions including urea and creatinine and there are significant improvement in GFR. Stem cells are a promising new therapeutic approach to treat chronic renal failure.

Keywords:

(Chronic renal failure, autologous stem cell transplantation)

List Of Contents

		page
Introduction		1
Aim of work		2
Review: Chapter 1. Stem Cell		
-	Types of stem cells	3
	-Mesenchymal stem cell	20
	-Properties of stem cell	33
Chapter 2. Chronic renal failure		
-	Nephrogensis	43
-	Chronic kidney disease	51
Subject and methods		61
Results		71
Discussion		80
Summary & conclusion and Recommendations		88
References		90
Appendix		125
Arabic summary		126

List of tables

	Page
Table (1): Frequency and Percent of Patients' Gender.	
Table (2): Frequency and Percent of the Disease Aetiology in	
the Patients.	
Table (3): The Percentage of Cells Expressing Positive CD 34	74
and CD44.	
Table (4): Laboratory Data of the Patients before Stem Cell	75
Injection.	
Table (5): Laboratory Data of the Patients after Stem Cell	
Injection.	
Table (6): Comparison between Urea Level before and after	77
Induction of Therapy.	
Table (7): Comparison between Creatinine Levels before and	78
after Induction of Therapy.	
Table (8): Comparison between GFR before and after	79
Induction of Therapy	

List of Figure

	Page
Fig (1): Classification of human stem cells.	
Fig (2): Mesenchymal stem cell differentiation.	32
Fig (3): Plasticity of adult stem cells (NIH, 2006).	39
Fig (4): Nephron development.	46
Fig (5): Structure of nephron and glomerulus.	49
Fig (6): Structure of the nephrone.	51
Fig (7): Distribution of Patients' Gender.	73
Fig (8): Distribution of Different Causes of Chronic Renal Failure in Patients.	74
Fig (9): Laboratory Data of the Patients before and after Stem Cell Injection.	76
Fig (10): Mesenchymal stem cells.	79

List Of Abbreviation

ABCG2 ATP-binding cassette class G2

ACEIS Angiotensin converting enzyme inhibitors

AKI Acute kidney injury

ALDH Aldehyde dehydrogenase

ATP Adenosin tri-phosphate

BCRP1 Breast cancer resistance protien

BFGF Basic fibroblast growth factor

BIO 6-bromoindirubin- 3'-oxime

BMCs Bone marrow cell

BM Bone marrow

CAM Cellular adhesion molecule

CD Cluster of differentiation

CFCs Colony forming cell

CFU-F fibroblastoid colony forming unit

DMEM Dulbeco's modified eagles'medium

DNA Deoxyribo-nucleic acid

ECM Extra cellular matrix

EGF Epidermal growth factor

EPCR Endothelial Protein C Receptor

ES Embryonic stem cell

FITC Fluorescin isothiocyanate conjugated

G-CSF Granulocyte-colony stimulating factor

GFP Green fluorescence protein

GM-CSF Granulocyte-macrophage colony-stimulating

factor

GVHD Graft-versus-host-disease

H-CAMs Homing-cellular adhesion molecules

4-HC 4-hydroxyperoxycyclophosphamide

HA Hyaluronic acid

HDT High-dose treatment

HGF Hepatocyte growth factor

HIV Human immunodeficiency virus

HSCs Heamatopoietic stem cells

ICM Inner cell mass

ICAM Intercellular adhesion molecule

IFN-γ Interferon-γ

IL Interlukin

IM Intermediate mesoderm

LFA Lymphocyte function-associated antigen

LIF Leucocyte inhibitory factor

LIF Leukemia inhibitory factor

LT-HSC Long-term self-renewing hemtopoietic stem cells

LTC-IC Long term culture initiating cells

MAPCs Multipotent adult progenitor cells

MHC Main histocompatibility complex

MM Multiple myeloma

MSCs Mesenchymal stem cells

NOD/SCID Nonobese diabetic severe combined immune-

dificient

Ol Osteogenesis imperfecta

PBS Phosphate buffer saline

PDGF Platelets-derived growth factor

PE Phycoerythrin

RRT Renal replacement therapy

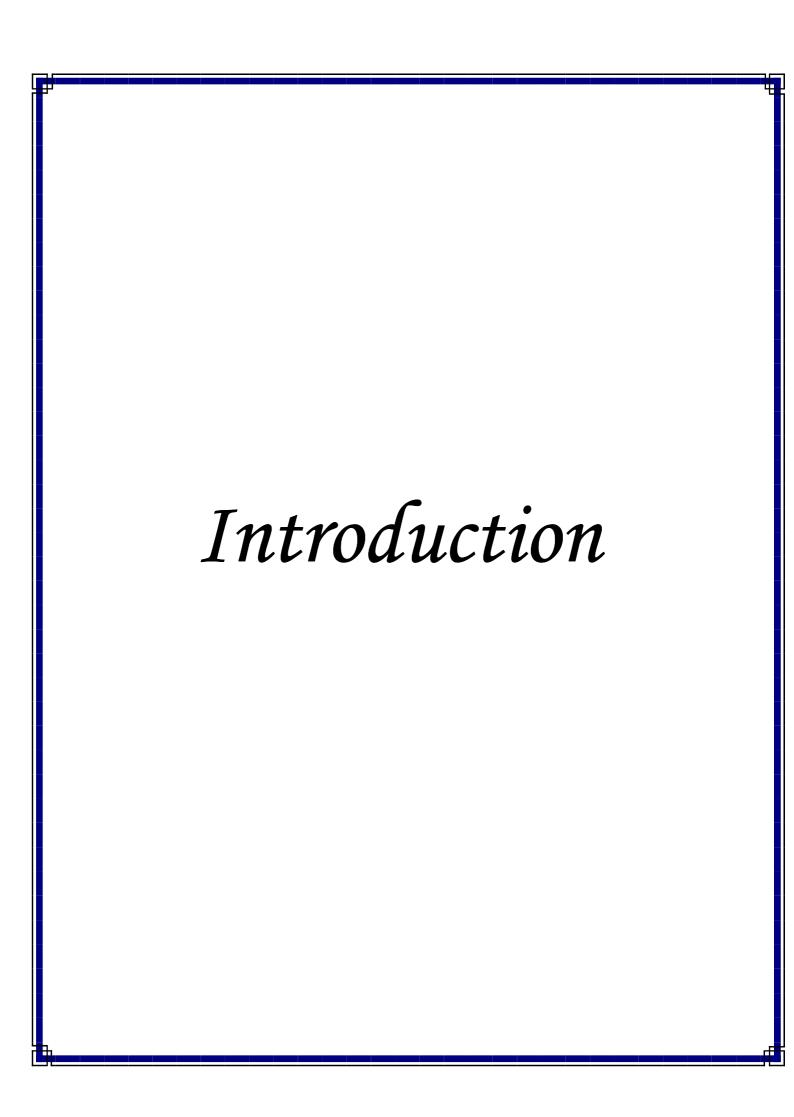
SCF Stem cell factor

SCT Stem cell transplantation

SDF Stromal derived factor

SH2 Dihydro-sulfur

SP Side Population


TGF- β Transforming growth factor- β

UCB Umbilical cord blood

US United States

VCAM Vascular cell adhesion molecule

Wnt-pathway Wingless Int gene

INTRODUCTION

Stem cells have the unique ability to differentiate and selfregenerate (Chamberlain et al, 2007).

The bone marrow (BM) contains at least two populations of stem cells, haematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs), which provide stromal support for HSCs (Wagers and Weissman, 2004).

The hematopoietic SC (HSC), which reside within the stromal compartment of the BM are undifferentiated cells capable of self-renewal and stepwise differentiation into fully specialized cells of the blood, e.g. erythrocytes, thrombocytes and leukocytes (Benedetta et al, 2008).

The MSC are undifferentiated adult SC of mesodermal origin that have the capacity to differentiate into cells of connective tissue lineages, including bone, fat, cartilage and muscle. They can be isolated and expanded with high efficiency in culture as plastic adherent cells (Benedetta et al, 2008).

Chronic kidney disease (CKD) is increasing at the rate of 6-8% per annum in the US alone. At present, dialysis and transplantation remain the only treatment options. However, there is hope that stem cells and regenerative medicine may provide additional regenerative options for kidney disease. Such new treatments might involve induction of repair using endogenous or exogenous stem cells or the reprogramming of the organ to reinitiate development (Hopkins et al, 2008).

Aim of the Work