MDR-1 POLYMORPHISMS (G2677T & C3435T) IN B-CHRONIC LYMPHOCYTIC LEUKEMIA

Thesis

Submitted for the fulfillment of Master Degree in Clinical & chemical Pathology

BY

Wafaa Wageeh Faris Daod

M.B.B.Ch Cairo University

Supervised By

Prof. Dr. Sahar Kamal Elden Hussien

Professor of Clinical & Chemical Pathology

Faculty of Medicine- Cairo University

Dr. Asmaa Ahmed A.EL-Aal

Ass. Prof. of Clinical & chemical Pathology
Faculty of Medicine- Cairo University

Faculty of Medicine
Cairo University
2012

Acknowledgment

First of all, all thanks to ALLAH for blessing this work until it has reached its end.

I am indebted to many individuals for their support and assistance in the preparation of this work.

I would like to express my deep gratitude to Prof. Dr. Sahar Kamal Elden Hussien Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University, for her great help and support. Her supervision upon this work was a great honor to me.

I also hold sincere appreciations for the time invested by Dr. Asmaa Ahmed A.El Aal ,Ass. Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University, to closely supervise and continuously encourage this work.

I would like to thank Dr. Reham Afifi, Ass. Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University for her support and help.

I owe a deep debt of gratitude to the many patients who have allowed me to intrude upon their suffering and date in this study. I cannot name them, for reasons of confidentiality, but I do thank them most sincerely.

Finally, I would like to express my deepest gratitude to my whole family, who always support me throughout my life.

I thank them all!

Wafaa Wageh

List of Contents

	Page No.
List of Abbreviations	I
List of Tables	V
List of Figures	VI
Abstract	VII
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): B-cell chronic lymphocytic leukemia	4
Epidemiology	4
Etiology	5
1.Environmental	5
2.Infections	5
3.Hereditary and genetic factors	6
Pathogenesis	6
Role of apoptosis in the pathogenesis of CLL	8
Clinical findings	10
1.General symptoms	10
2.Lymphadenopathy	11
3.Splenomegaly and hepatomegaly	11
4.Extranodal involvement	11
5.Immunological complications	12
Laboratory findings	13
1.Hematological findings	13
i.Lymphocytosis	13
ii.Anemia	14
iii.Thrombocytopenia	14
iv.Neutropenia	15
2.Bone marrow findings	15
i.Bone marrow aspiration	15
ii. Bone marrow trephine biopsy	15
3.lmmunological findings	16
i.Protein electrophoresis	16
ii.lmmunophenotyping	17
4.Biochemical findings	19
i.Beta 2 microglobulin	19
ii. Lactate dehydrogenase	19
iii. Serum calcium	19
Diagnostic criteria of CLL	19
Clinical staging system	20

Complications of CLL	22
1.Infection	22
2.Second malignancies	22
Prognosis of CLL	23
1.Classic prognostic factors	23
i.Age at diagnosis	23
ii.Gender	24
iii.Lymphocyte morphology	24
iv.Absolute lymphocyte count	24
v.Lymphocyte doubling time	24
vi.Pattern of lymphocyte infiltration in the marrow	25
2.Other prognostic factors	25
i.Indicators of tumor burden in the serum	25
ii.CD38 expression	26
iii.Mutation status of IgVH genes	27
iv.Expression of zeta chain associated protein	27
v.Expression of CD49d	28
vi.Angiogenesis	28
Diffrential diagnosis of CLL	29
1-Mantle cell lymphoma	30
2-Prolymphocytic leukemia	30
3-Splenic lymphoma with villous lymphocytes	31
4-Hairy cell lymphoma	31
5-Follicular cell lymphoma	32
Treatment of CLL	32
Decision to treat	33
Chemotherapy	33
Stem cell transplantation	34
Refractory CLL	35
Chapter (2): Multiple drug resistance	36
Introduction	36
MDR1 gene	36
P- glycoprotein	37
Tissue distribution of Pgp	37
Structure of Pgp	37
Function of Pgp	37
Mechanism of action of Pgp	39
Detection of MDR1gene	40
MDR1 gene expression, modulation and therapeutic uses	41
MDR1 gene polymorphisms	43
MDR1 expression in haematological malignancies	44
1-Acute leukemias	44
i.Acute myeloblastic leukemia	45
ii.Acute lymphoplastic leukemia	45

2-Chronic myelogenous leukemia	46
3-Myloma	46
4-Lymphomas	46
5- Solid tumours	47
i.Breast cancer	47
ii.Sarcomas	47
iii.Colon cancer	47
iv.Neuroblastoma	48
v.Miscellaneous solid tumours	48
Subjects and Methods	49
Results	67
Discussion	79
Summary	89
References	91
Arabic Summary	

List of Abbreviations

α	. Alpha
μg	Microgram
μL	Microlitre
μ	Mu
ABCB1	ATP-binding cassette sub-family B member 1
ADP	.Adenosine diphosphate
AEI	.Allelic expression imbalance
ALC	Absolute lymphocyte count
ALL	Acute lymphoblastic leukaemia
AML	Acute myeloblastic leukaemia
ATP	.Adenosine triphosphate
Bad	Bcl-2/BCL-XL-associated death promoter
Bak	Bcl-2 homologous antagonist/killer
Bax	Bcl-2-associated factor X
Bcl	B cell leukemia/lymphoma
B-CLL	B cell chronic lymphocytic leukemia
Bik	Bcl-2 interacting killer
β2MG	Beta 2 microglobulin
CBC	Complete blood count
CCL21	Chemokine ligand 21
CCR7	Chemokine receptor type 7
CD	Cluster of differentiation
CHOP	.Cyclophosphamide, doxorubicin, vincristin and prednisolone
CLL	.Chronic lymphocytic leukemia
CML	. Chronic myloid leukemia
DNA	Deoxyribonucleic acid
DW	Distilled water
dL	.Decilitre

dsDNA......Double stranded DNA **EBV**.....Epstein Barr virus **EDTA**.....Ethylene diamine tetraacetic acid **FAB**.....French American British classification **FC**.....Fludarabin with cyclophosphamide **FCL**.....Follicular cell lymphoma FCR.....Fludarabin, cyclophosphamide and rituximab **FISH**.....Fluorescence in situ hybridization FMC7.....Mouse Anti-Human B-Cells FR.....Fludarabin with rituximab **g.....** Gram Hb Hemoglobin HCL Hairy cell leukemia **HCV** Hepatitis C virus HIV.....Human immunodefiency virus Hrk Harakini, Bcl-2 interacting protein **HSCT**.....Haematopoietic stem cell transplantation **HSM** Hepatosplenomegaly Ig..... Immunoglobulin IgVH...... Immunoglobulin variable region heavy chain gene **IU**International unit Kb.....Kilo bite kD Kilo Dalton **L** Litre LDH Lactate dehydrogenase **LDT**.....Lymphocyte doubling time **M**..... Molar McI-1..... Myeloid cell leukemia sequence 1 MCL.....Mantle cell lymphoma

MDR.....Multiple drug resistance

MHC..... Major histocompatibility complex

mAb.....Monoclonal antibody

mL Millilitre

mRNA..... Messenger RNA

N Normal

NCI...... National Cancer Institute

NK.....Natural killer

ng Nanogram

OD.....Optical density

P53(P) means protein and the number after it represents the molecular weight of this protein

PB..... Peripheral blood

PCR Polymerase chain reaction

PCR-RFLP......Polymerase chain reaction restriction fragment length polymorphism

Pgp.....P glycoprotein

PLL Prolymphocytic leukemia

q Long arm of the chromosome

RNA Ribonucleic acid

RT-PCR Reverse transcriptase PCR

REs.....Restriction enzymes

rpm Revolution per minute

sCD23..... Soluble CD23

slg Surface immunoglobulin

SLL Small lymphocytic lymphoma

SLVL..... Splenic lymphoma with villous lymphocytes

SNPs.....Single nucleotide polymorphisms

sTK.....serum thymidine kinase

TCR.....T cell receptor

TLC..... Total leukocytic count

t	Translocation
UV	Ultraviolet
VAD	Vincristin,adriamycin and dexamethazone
VH	Variable region heavy chain gene
WBC	White blood cell
WHO	World Health Organization
ZAP70	Zeta-chain associated protein kinase

List of Tables

		Page
Table (1)	Immunophenotyping in chronic B-cell lymphoproliferative disorders	17
Table (2)	Scoring system for the diagnosis of chronic lymphocytic leukemia	18
Table (3)	Staging of chronic lymphocytic leukemia	21
Table (4)	Stratification of CLL patients in risk group according to prognostic factors	29
Table (5)	EZ-10 spin column Blood Genomic DNA Minipreps kit.	53
Table (6)	A total 25μl reaction volume for PCR amplification	57
Table (7)	laboratory data of the CLL group	70
Table (8)	Comparison between CLL gp. & control gp as regard MDR1 gene polymorphism (C3435T)	71
Table (9)	sex variation between polymorphic type & wild type of CLL gp as regard MDR1 gene polymorphism (C3435T)	72
Table (10)	Comparison bet. Polymorphic type & wild type of MDR1gene polymorphism (C3435T) within CLL gp as regard clinical and lab. Data	73
Table (11)	Comparison bet. CLL gp & control gp as regard MDR1 gene polymorphism (G2677T)	76
Table (12)	Sex variation between polymorphic type & wild type of CLL gp as regard MDR1 gene polymorphism(G2677T)	77

List of Figures

Figures		Page
Figure (1):	Genotype C3435T in CLL group and control group	71
Figure (2):	Genotype C3435T in relation to gender in CLL group	72
Figure (3):	Genotype C3435T in relation to age in CLL group	73
Figure (4):	Genotype C3435T in relation to hemoglobin level in CLL group	74
Figure (5):	Genotype C3435T in relation to WBCs in CLL group	74
Figure (6):	Genotype C3435T in relation to absolute lymphocytic count in CLL group	75
Figure (7):	Genotype C3435T in relation to platelet count in CLL group	75
Figure (8):	Genotype C2677T in CLL group and control group	76
Figure (9):	Genotype C2677T in relation to gender in CLL group	77
Figure (10):	A representation of the G2677T polymorphism of the MDR 1 gene	78
Figure (11):	A representation of the C3435T polymorphism of the MDR 1 gene	78

Abstract

The human multidrug resistance (MDR-1) gene encodes Pglycoprotein (Pgp), which affects the pharmacokinetics of many drugs. Here, we investigated whether common MDR1 single nucleotide polymorphisms (SNPs) (C3435T and G2677T) affect predisposition to B-chronic lymphocytic leukemia (B-CLL). Genotyping was performed in 65 patients with CLL and 70 controls using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). We observed a higher frequency of carriers of 3435CT gene among B-CLL patients as compared to normal individuals (58.5% vs. 22.9%, p=<0.001). The genotypes 3435CT was associated with B-CLL, [odds ratio=4.8, 95%] confidence interval=2.3-10.0]. Moreover, patient and control groups did not differ significantly regarding MDR1 genotype (G2677T). Furthermore, no correlation was shown between the MDR1 (3435 or 2677) genotypes and clinical and laboratory data of patient group. In conclusion, these data indicate that the MDR1 C3435T SNP may carry an increased risk of developing B-CLL.

Key Words:

PgP - MDR-1 - B-CLL.

INTRODUCTION

B-Chronic lymphocytic leukemia is one of the most common hematological malignancies that results in significant morbidity and mortality. It is caused by the clonal expansion of B cells with a distinctive morphological appearance and surface immunophenotype. One of the most striking features of CLL is the extent of its clinical variability. Some studies have been developed to understand this variability in terms of biological heterogeneity (*Pettitt*, 2007).

The incidence of CLL is higher among whites than blacks. The incidence of CLL is higher in males than in females, CLL is a disease that primarily affects the elderly(*Gribben*, 2010).

Most people are diagnosed without symptoms as the result of a routine blood test that returns a high white blood cell count, but as it advances CLL results in swollen lymph nodes, spleen, and liver, and eventually anemia and infections. Early CLL is not treated, and late CLL is treated with chemotherapy and monoclonal antibodies. It is now possible to diagnose patients with short and long survival more precisely by examining the DNA mutations, and patients with slowly-progressing disease can be reassured and may not need any treatment in their lifetimes (*Chiorazzi et al.,2005*).

The prognosis of patients with CLL varies widely at diagnosis. Some patients die rapidly, within 2-3 years of diagnosis, because of complications from CLL. Most patients live 5-10 years,

with an initial course that is relatively benign but followed by a terminal, progressive, and resistant phase lasting 1-2 years. During the later phase, morbidity is considerable, both from the disease and from complications of therapy (*Rai & Keating*,1997).

Prognosis depends on the disease stage at diagnosis as well as the presence or absence of high-risk markers (*Kristinsson et al.*,2009).

The multidrug resistance 1 gene (MDR1) product P-glycoprotein (Pgp) is an important member of ATP-binding cassette transporter family that functions as an energy dependent xenobiotic efflux pump (*Gervasini et al.*, 2006). Therefore, the most important physiological role of Pgp is the protection of the organism against toxic xenobiotic agents and environmental carcinogens (*Jamroziak et al.*, 2004 and Gervasini et al., 2006). Moreover, as a wide range of important anticancer agents such as drugs used in chemotherapy can be actively extruded by this protein, Pgp expression in tumor cells is associated with multidrug resistance phenotype in some malignancies, including leukemia (*Jamroziak et al.*, 2004, 2005).

Pgp is expressed at the highest level in adrenal gland; at an intermediate level in breast, stomach, colon, jejunum, rectum, liver, kidney, and placenta; and at a low level in testis, brain, bone marrow, and heart in humans. Its wide tissue distribution suggests that Pgp has a fundamental role in normal cellular metabolism (*Hitchins et al.*, 1988).

MDR1 is a polymorphic gene with more than 40 single-nucleotide polymorphisms (SNPs). The most important MDR1 gene polymorphism is C3435T SNP, which is located on exon 26 and considered to be associated with decreased tissue protein expression and activity (*Hoffmeyer et al.*, 2000).

A number of studies indicated that the presence of the 3435T allelic variant and particularly the homozygous mutant 3435TT genotype seems to be associated with a greater susceptibility to renal epithelial tumors (Siegsmund et al., 2002), colon cancer (Kurzawski et al., 2005), ulcerative colitis(Schwab et al., 2003; Glas et al., 2004 and Farnood et al., 2007), and acute lymphoblastic leukemia (Jamroziak et al., 2004).

Aim of the Work

The aim of the present study was to evaluate the role of two MDR1 gene polymorphisms (G2677T polymorphism) in exon 21 and (C3435T polymorphism) in exon 26 as risk factors for development of B-CLL and their relation to the clinical presentation of the patients.