Synthesis and characterization of new materials to be applied for hydrogen energy storage and water purification

Thesis submitted to

The Faculty of Science, Cairo University

by

Heba Ezzat Ahmed Ghorab (B.Sc., Cairo University)

In partial fulfillment of the requirements

for

the degree of M.Sc. in Chemistry

APPROVAL SHEET FOR SUBMISSION

Title of (M.Sc) Thesis:

SYNTHESIS AND CHARACTERIZATION OF NEW MATERIALS TO BE APPLIED FOR HYDROGEN ENERGY STORAGE AND WATER PURIFICATION

Name of the candidate: Heba Ezzat Ahmed Ghorab

This thesis has been approved for submission by the supervisors:

1- Dr. Mohammed S. Mansour

2- Dr. Nahla Ismail

Prof.Dr. Mohamed shokry

Chairman of chemistry Department. Faculty of Science, Cairo University

Statement

Beside the work carried out in this thesis, the candidate has attended and successfully passed an examination in post-graduate courses during the academic year 2005-2006 covering the following topics:

- 1. Molecular structure
- 3. Quantum chemistry
- 5. Advanced analytical chemistry
- 7. Physical polymers
- 9. Adsorption
- 11. X-ray diffraction and thermal analyses
- 13. Advanced inorganic chemistry
- 15. Thermodynamics
- 17. Statistical thermodynamics
- 19. Solar energy

- 2. Molten metallurgy
- 4. Nuclear chemistry
- 6. Catalysis and colloids
- 8. Group theory
- 10. Electrochemistry
- 12. Electrode kinetics
- 14. Volummetry
- 16. Mechanisms of inorganic chemistry
- 18. Chelatimetry
- 20. German language

ACKNOWLEDGEMENT

The author wishes to express his gratitude to

Dr. Mohammed S. Mansour; dept. of phys. Chemistry, faculty of science, Cairo University, and to Dr. Nahla Ismail, dept. of phys. Chemistry, National Research Centre, Cairo, for their fatherly guidance, keen interest, supervision and kind help through the development of this thesis. Efforts of Dr. Islam H. Abd El-Maksoud, dept. of phys. Chemistry, National Research Centre are truly acknowledged. The author is deeply indebted for his suggesting the problem, close supervision of the experimental part and fruitful discussions towards the accomplishment of the work.

List of Abbreviations

XRD : X-Ray Diffraction

SEM : Scanning Electron Microscopy

IR : Infrared absorption Spectra

D.S.C.: Differential Scanning Caloremetry

T.G.A: Thermogravimtery Analysis

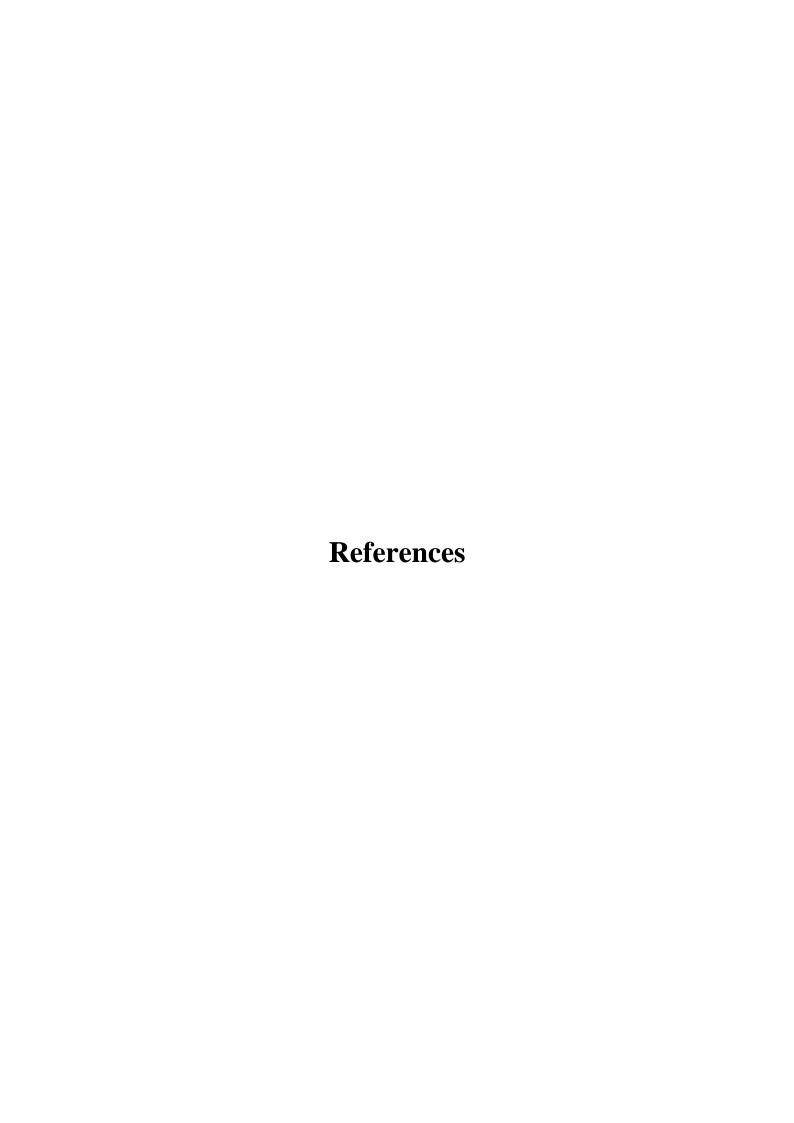
ESR : Electron spin resonance

CTAB: N,N,cetyltrimethylammoniumbromide

TEAB: Tetraethylammoniumbromide

CEC: Cation Exchange Capacity

BET : Specific surface area


PCT : Pressure Composition Temperature Isotherm

Chapter (I) Introduction

Chapter (II) Experimental

Chapter (III) Results and Discussion

SYNTHESIS AND CHARACTERIZATION OF NEW MATERIALS TO BE APPLIED FOR HYDROGEN ENERGY STORAGE AND WATER

PURIFICATION

Name: Heba Ezzat Ahmed Ghorab

Degree: M.Sc.thesis, Faculty of Science, Cairo University, 2009

ABSTRACT

Different types of titanosilicates (ETS-4, Natisite, and Sitinakite)

were prepared using different precursors such as using natural SiO₂ from

Red sea desert, without purification. Different techniques were used to

characterize these titanosilicates such as XRD, IR, SEM, DSC-TGA,

BET, ESR, ion exchanging and hydrogen energy storage. These studies

showed that the prepared titanosilicates are well crystalline and possess

high ion exchange capacity. Moreover, they exhibit shape selectivity

towards adsorption of Cu²⁺ & Pb²⁺ ions from water where high adsorption

was observed in case Pb2+ more than Cu2+ ions. Hydrogen adsorption

isotherm measurements were carried out at -193°C up to 20 bars in

titanosilicate samples, physisorption of hydrogen was observed and

microporous structure of Sitinakite samples showed maximum hydrogen

adsorption capacity more than dense structure of Natisite and

microporous ETS-4.

Key words: Titanosilicates, Zeolites, water purification, Ion exchange,

renewable energy, hydrogen storage energy.

Supervisors:

1- Dr. Mohammed S. Mansour

2- Dr. Nahla Ismail

Prof.Dr. Mohamed Shokry

Chairman of chemistry Department. Faculty of Science, Cairo University.

Contents

Chapte	er (I) Introduction	page
1	History	1
2	Zeolite definition	2
3	Classification of Zeolites	4
3.1	According to their origin	4
3.2	Framework classification	5
I	Vanadium metal silicate	9
II	Titanosilicate	10
4	Application of zeolites	14
4.1	Water treatment	14
4.1.1	Adsorption and separation	15
4.1.2	Ion exchange	16
5	Hydrogen energy storage	20
5.1	Gaseous hydrogen storage	21
5.2	Liquid hydrogen storage	22
5.3	Solid hydrogen storage	22
-	Requirement of hydrogen storage system	26
1	Ease of storage and retrivel	26
2	Energy consumption and storage cost	26
3	Volumetric Density/Capacity	26
4	Gravimetric Density/Capacity	27
5	Safety	27
-	Thermodynamic Aspect of metal hydride	29
-	Aim of work	32
	er (II) Experimental	22
1	Materials used	33
2	Methods of preparations	34
2.1	Preparation of ETS-4	35
2.2	Preparation of V-ETS-4	35
2.3	Preparation of Natisite	36
2.4	Preparation of V-Natisite	37
2.5	Preparation of Sitinakite	37
3	Ion exchange Studies	38
4	Adsorption isotherm measurements	39
5	Apparatus and techniques	40
5.1	X-Ray diffraction	40
5.2	Infrared absorption spectra	40

5.3	Scanning electron microscope	41
5.4	Thermal analysis	42
5.5	Specific surface area	42
5.6	Atomic absorption	42
5.7	Electron spin resonance	43
5.8	PCT	43
Chapte	er (III) Results and discussion	
1	Structure studies	45
1.1	XRD investigation	45
1.2	Scanning electron microscopy	63
1.3	Infrared absorption spectra	72
1.4	Thermal analyses	81
2	Application of titanosilicates	88
2.1	Ion exchange studies	88
-	ESR spectra	97
2.2	Adsorption isotherm measurements	103
Summ	ary	108
References		112

List of figures

Figure No.		page
No. 1.	Three- and two-dimensional of the framework structure of	2
	zeolites	
2.	Framework structures of zeolites	3
3.	Some subunits and cages/cavities	7
4.	Some chains that recur in several framework types	7
5.	SEM images of (a) ETS-4 and (b) V-ETS-4	12
6.	Ion exchange of Ca and Mg ions in untreated water using	16
	Na-resin.	
7.	Patented multi-faceted zeolite crystal carrier	17
8.	Idealized PCT curves	29
9.	Schematic of Van't Hoff plot	31
10.	X-ray diffractograms of ETS-4 prepared by different	47
	precursors & V-ETS-4	
11.	X-ray diffractograms of Natisite prepared by different	50
	precursors & V-Natisite	
12.	X-ray diffractograms of Sitinakite prepared by different	54
	precursors	
13.	X-ray diffractograms of Natisite prepared by SiO ₂	55
	(Kieselgur)& Sitinakite prepared by natural SiO ₂	
14.	X-ray diffractograms of Sitinakite prepared by SiO ₂	56
	(Kieselgur)& Natisite prepared by natural SiO ₂	
15.	X-ray diffractograms of SiO ₂ (Kieselgur)& natural SiO ₂	60
16.	SEM of ETS-4 pprepared in absence of TEAB	64
17.	SEM of ETS-4 pprepared in presence of TEAB	65
18.	SEM of V-ETS-4	66
19.	SEM of Natisite prepared by TiO ₂ , SiO ₂ (Kieselgur) and CTAB	68

20.	SEM of Natisite prepared by TiO ₂ and SiO ₂ (Kieselgur)	68
21.	SEM of Natisite prepared by TiCl ₄ and natural SiO ₂	69
22.	SEM of V-Natisite	69
23.	SEM of Sitinakite prepared by TiCl ₄ and SiO ₂ (Kieselgur)	70
24.	SEM of Sitinakite prepared by TiO ₂ and natural SiO ₂	70
25.	SEM of Sitinakite prepared by TiO ₂ and natural SiO ₂ &	71
	autoclaving for 48h	
26.	IR spectra for a) ETS-4, b) V-ETS-4	75
27.	IR spectra for Natisite samples	76
28.	IR spectra for Sitinakite samples	77
29.	DSC-TGA curves of ETS-4	84
30.	DSC-TGA curves of V-ETS-4	84
31.	DSC curves of ETS-4 & V-ETS-4	85
32.	DSC-TGA curves of Sitinakite prepared by TiO ₂ and	86
	natural SiO ₂	
33.	DSC-TGA curves of Sitinakite prepared by TiO ₂ and	86
	natural SiO ₂ & autoclaving for 48h	
34.	DSC-TGA curves of Sitinakite prepared by TiCl ₄ &	87
	SiO ₂ (Kieselgur)	
35.	DSC curves of Sitinakite samples	87
36.	Ion exchange of Cu ²⁺ and Pb ²⁺ by ETS-4	90
37.	Ion exchange of Cu ²⁺ and Pb ²⁺ by V-ETS-4	90
38.	Ion exchange of Cu ²⁺ by ETS-4 & V-ETS-4	91
39.	Ion exchange of Pb ²⁺ by ETS-4 & V-ETS-4	91
40.	Ion exchange of Cu ²⁺ and Pb ²⁺ by Natisite	93
41.	Ion exchange of Cu ²⁺ and Pb ²⁺ by V-Natisite	93
42.	Ion exchange of Cu ²⁺ by Natisite & V-Natisite	94
43.	Ion exchange of Pb ²⁺ by Natisite & V-Natisite	94