Near IR Lasing Properties of Semiconductor Nanocrystals

A Thesis Presented To the National Institute of Laser Enhanced Science (NILES)

By

Ahmed Mahmoued Saad

(B.Sc of physics, Cairo University)

Demonstrator at the Department

of

Laser Sciences and Interactions
National Institute of Laser Enhanced Sciences
Cairo University, Egypt

In Partial Fulfillment of the Requirement for the Degree:

Master in Laser Science

(Laser Sciences and Interactions)

NILES Cairo University

2009

Near IR Lasing Properties of Semiconductor Nanocrystals

Supervisors

Associate Prof. Dr. Iftitan E M Munir Azzouz

Department of Laser Sciences and Interactions
National Institute of Laser Enhanced Sciences
Cairo University, Egypt

Dr. Mona Bakr Mohamed

Department of Laser Applications in Metrology,
Photochemistry and Agriculture
Institute of Laser Enhanced Sciences
Cairo University, Egypt

Dr. Maram Taha Hussein

Department of Laser Sciences and Interactions
National Institute of Laser Enhanced Sciences
Cairo University, Egypt

Approval Sheet

Title of thesis:

Near IR lasing properties of semiconductor nanocrystals

Degree: Master in Laser Science and Interactions
Name of the student: Ahmed Mahmoued Saad
Supervisors:
Associat. Prof. Dr. Iftitan E M Munir Azzouz
Dr. Mona Bakr Mohamed

Dr. Maram Taha Hussein

Dedicated to My parents, My wife, My sisters And my sons

Acknowledgment

The author is pleased to express his deep appreciation to his supervisors, and to the spirit of Dr Salah Shafik, for accepting him as an M.Sc student for this challenging thesis. Their advices were crucial for my research and learning experience.

Thanks for **Dr. Iftitan M. Azzouz**, Associate Professor of Laser Science and Head of Laser Sciences and Interactions Department, at NILES, Cairo University, Egypt, Who is continuous encouragement, helpful suggestions, invaluable advices and support.

It gives me the greatest pleasure to express my deep thanks to **Dr. Mona Bakr Mohamed**, Lecturer of Photochemistry at NILES, the leader and the bigger sister for all the Nanotechnology group, for her valuable advices and suggestion, in solving the quantum dot synthesis problem. Her continuous assistance and valuable discussion will never be forgotten.

Deep thanks to **Dr. Maram Taha Hussein**, Lecturer of Laser Science at NILES, for continuous encouragement, helpful suggestion, invaluable advices for me and reading throughout the thesis.

I sincerely express my deepest gratitude to all the members of nanotechnology group at NILES, friends and colleagues especially Mrs Abeer Salah, Mr. Khaled Mohamed Abou-Zeid and Mr. Abdullah Fathy, for their faithful help and their

beneficial support during the research program in the laboratory.

Finally, I would like to thank my parents, my wife and all my family members for their support and caring attitude which kept me going until the end of my work.

Prerequisite Diploma courses

Diploma in Laser Systems

Code No.	Course Title	Hours
LS 101	Laser Physics	3
LS 102	Laser Systems, Safety & Application	3
LS 103	Instrumentation	3
LS 104	Optoelectronics	3
LS 105	Seminar/ or Research Project	2
LS 106	Optoelectronics Laboratory	3
LS 107	Computational Methods	1
Total of hours		18

Pre-master Courses

Pre-master in Laser Systems

Code No.	Course Title	Hours
LS 201	Advanced Laser Physics (2)	3
LS 202	Nonlinear Optics	2
LS 203	Quantum Electronics	2
LS 204	Spectroscopic Techniques	3
LS 205	Seminar/ or Experimental Project	2
LS 206	Laser Lab	3
Total Hours	S	15

Table of Contents

Title page	Ì
Supervisors	ii
Approval Sheet	iii
Dedication	iv
Acknowledgment	v
Prerequisite Diploma courses	vii
Pre-master Courses	viii
Table of Contents	ix
List of Figures	xiii
Summary	xix
Chapter One	
1.1 General Introduction	1
1.2 Physics of semiconductor nanomaterials	2
1.2.1 Weak Confinement Regime	6
1.2.2 Intermediate Confinement Regime	7
1.2.3 Strong Confinement Regime	8
1.3 The Confinement Effect on The Density of States	10
1.3.1 Three-Dimensional Systems (Bulk Material)	11
1.3.2 Two-Dimensional Systems (Quantum Well)	17
1.3.3 One-Dimensional Systems (Quantum Wires)	20
1.3.4 Zero-Dimensional Systems (Quantum Dots)	23
1.4 Energy Levels of a (Semiconductor) Quantum Dot	24
1.5 Optical Properties of Quantum Dots	26
1.5.1 Absorption and Emission Spectra	26
1.5.2 Core Shell Effect.	29
1.6 Multiexciton Effect	32
1.7 Auger Processes	37

1.8 Lasing Properties of Semiconductor Nanocrystals	••
Chapter Two	
Literature Survey and Over View of Dissertation Work	
2.1 Literature Survey	•••
2.1.1 Synthesis of semiconductor nanoparticles	
2.1.2. Multiexciton effect.	
2.1.3. Lasing properties of nanocrystals	
2.2. An Overview of the Dissertation Work	•••
Chapter Three	
Experimental Techniques and Methods	•••
3.1 Materials	
3.2 Methodology	
3.2.1 Preparation of Cdse Quantum Dots Using the Organometal	lic
Pyrolysis In Hot Surfactant Method	
3.2.2 Preparation of CdTe Quantum Dots	
3.2.3 Preparation of CdTe/CdSe Core Shell Quantum Dots Using the	ıe
Organometallic Pyrolysis in Hot Surfactant	
3.3 Determination of the Prepared Nanoparticles Size	•••
3.4 Embedding Nanocrystals in Polymer Matrix	
3.5 Instrumentation	••
3.4.1 Transmission Electron Microscopy (TEM)	
3.4.2 X-Ray Diffraction.	
3.4.3 Absorption and Emission Spectra	
3.4.4 Laser Induced Fluorescence	••
3.4.4.1 Excitation Source	
3.4.4.2 The cooling System	
3.4.4.3 Monochromator.	
3.4.4.4 Signal Detection Systems.	

3.5 Th	he Life Time Measurements
Chapt	ter Four
Resul	ts and Discussion
4.1 Pr	reparation, Characterization and Optical Properties of CdSe
Q	Quantum Dots
4	. 1.1 Preparation of CdSe Nanocrystals (NCs)
	.1.2. Determining the Size and Band Gap from the Absorption Spectra
	Nanocrystals
4.2. E	Effect of Laser Excitation Power on the Emission Spectra of
C	CdSe Nanocrystals
4	2.1 Power Dependence of the emission spectrum of CdSe Quantum
	Dots at Room Temperature
4	2.2.2 Effect of Temperature on the Emission Spectrum of CdSe
	Quantum Dots
4	2.2.3 Power Dependence of the Emission Spectrum of CdSe
	Quantum Dots at Low Temperature
4	2.4 Life-time measurements of CdSe Quantum Dots
4.3 Pı	reparation, Characterization and Optical Properties of CdTe
Q	Quantum Dots
4	-3.1 Preparation of CdTe Nanocrystals (NCs)
4	.3.2 Optical properties of CdTe quantum dots
4	.3.3 Determining the Size and Band Gap from the Absorption
	Spectra
4.4. E	Effect of Laser Excitation Power on the Emission Spectra of
C	CdTe Nanocrystals
4	.4.1 Power Dependence of the Emission Spectrum of CdTe
	Quantum Dots at Room Temperature

4.4.2 Effect of Temperature on the Emission Spectrum of CdTe	
Quantum Dots	103
4.4.3 Power Dependence of the Emission Spectrum of CdTe	
Quantum Dots at Low Temperature	104
4.4.4 Lifetime Measurements of CdTe Quantum Dots	107
4.5 Preparation, Characterization and Optical Properties of	
CdTe/CdSe Core Shell Quantum Dots	108
4.5.1 Pyrolysis of Organometallic Precursors at High Temperature	108
4.5.2 Optical Properties of CdTe/CdSe Core Shell Quantum Dots	109
4.6 Effect of Laser Excitation Power on the Emission Spectra of	
CdTe/CdSe core shell quantum dots	111
4.6.1 Power Dependence of the emission spectrum of CdTe/CdSe	
core shell Quantum Dots at Room Temperature	111
4.6.2 Effect of Temperature on the Emission Spectrum of CdTe/CdSe	
Core Shell Quantum Dots.	114
4.6.3 Power Dependence of the Emission Spectrum of CdTe/CdSe	
Core Shell Quantum Dots at Low Temperature	117
4.6.4 Life-Time Measurements of CdTe Quantum Dots	120
Chapter Five	
Conclusion	121
Defenence	105

List of Figures

Chapter One		
Figure 1.1	Schematic of electron occupy of allowed energy bands for given materials.	3
Figure 1.2	(a) Absorption spectra of CuCl nanocrystals with radius. (b) Size dependence of the exciton line peak position as function of $1/a^2$.	7
Figure 1.3	(a) Absorption spectra of CuBr nanocrystals with radius. (b) Size dependence of the exciton line peak position as function of $1/a^2$.	8
Figure 1.4	(a) Absorption spectra of CdS nanocrystals with radius. (b) Size dependence of the exciton line peak position as function of $1/a^2$.	9
Figure 1.5	The progression of confinement and the effects on the density of states.	10
Figure 1.6	Periodic boundary conditions (only drawn for the x-dimension) for a free-electron gas in a solid with thickness d.	14
Figure 1.7	Electron bands in a three dimensional bulk solid	16
Figure 1.8	Particle-in-a-box model for a free electron moving along in the z-axis. The movement of electrons in the z-direction is limited to a "box" with thickness d	17
Figure 1.9	Electron bands in a two-dimensional system.	19
Figure 1.10	Electron bands in a one-dimensional system.	21
Figure 1.11	Electron states in a zero-dimensional system.	24
Figure 1.12	Energy levels and allowed single-particle dipole transitions in a spherical QD with infinite barrier, according to effective-mass theory using parabolic bands and yielding	26
Figure 1.13	Absorption and emission spectra of colloidal CdSe quantum dots of different sizes.	27
Figure 1.14	Type of core shell a) CdSe/ZnS core shell Type-I structure (b) PL and PLE of CdSe/ZnS core shell Type-I (c)CdTe/CdSe core shell type II (d) PL and PLE of CdTe QD and CdTe/CdSe core shell QDs have different shell thickness	31
Figure 1.15	Impact ionization mechanism for biexciton generation in NCs	33

Figure 1.16	represents all the possible multiexcitonic states up to four	
	exciton per particle either if the particle charged or neutral	
Figure 1.17	Illustration of the Auger processes considered	39
Figure 1.18	Semiconductor laser fundamentals	41
	Chapter Two	
Figure 2.1	Nonradiative Multiparticle Auger Recombination in quantum dots	50
Figure 2.2	Development of a sharp stimulated emission band as a function of pump intensity in PL spectra of films ($T = 80 \text{ K}$) fabricated from TOPO capped quantum dots with $R = 2.1 \text{ nm}$.	51
	Chapter Three	
Figure 3.1	Setup for quantum dot synthesis	61
Figure 3.2	laser induced florescence (LIF) with cooling system	71
Figure 3.3	The life time measurement system at room temperature	72
	Chapter Four	
Figure 4.1	The absorption spectra of CdSe quantum dots with different	
	size.	75
Figure 4.2	the photoluminescence of CdSe quantum dots with different	
	size	75
Figure 4.3	a) show the TEM image for the 3.3 nm CdSe QDs. (b) The	
	X-ray diffraction pattern of the 3.3 nm CdSe QDs.	76
Figure 4.4	Sizing curves (absorption - size relationship) for prepared	
	CdSe nanocrystals calculated according to Yu et al.	77
Figure 4.5	Sizing curves (absorption - size relationship) for prepared	
	CdSe nanocrystals calculated according Brus et al.	79
Figure 4.6	Photoluminescence (PL) spectra of prepared CdSe Q.Ds	80
Figure 4.7	Show Stoke shift, where Absorption (black line) and	
	Emission (gray line) spectra for a series of CdSe	82
	nanocrystal (Q.Ds) samples in toluene.	

Figure 4.8	(a) the emission spectra of Spherical CdSe particle of		
1 1842 119	average size 2.8 nm at different laser excitation power (b)		
	the relation between the excitation power and the intensity	85	
	of the emission spectra		
T: 40	•		
Figure 4.9	Normalized emission spectrum of CdSe nanocrystals at low		
	power (black) and high laser excitation power (gray).	85	
	(Insets), the emission band is shifted to the red side of about	0.5	
	5 nm, and the band became slightly broader.		
Figure 4.10	Normalized emission spectrum of CdSe nanocrystals at		
	room temperature (black) and at 10K (gray), a) comparing		
	the emission spectra at different temperatures and using low	86	
	laser excitation power, b) at high excitation power.		
Figure 4.11	(a) The emission spectra of CdSe nanoparticle with		
	different laser excitation power at low temperature (b) the		
	relation between the excitation power and the intensity of	88	
	the emission spectra shows linear relation with different		
	slopes.		
Figure 4.12	(a) The emission spectra of CdSe nanoparticle with		
	different laser excitation power at low temperature (b) the		
	relation between the excitation power and the intensity of		
	the emission spectra shows linear relation with different	89	
	slopes.		
Figure 4.13	kinetics decay of the CdSe nanocrystals.	90	
Figure 4.14	Absorption spectra of the different sizes of CdTe NCs		
	prepared via organometallic pyrolysis method	93	
Figure 4.15	TEM image of the largest size of the prepared CdTe NCs		
	via organometallic pyrolysis method and its absorption and	93	
	emission spectra.		
]	