Minimally invasive knee arthroplasty

An essay

Submitted for fulfillment of Master Degree in Orthopedic Surgery

Presented by

Asaad Ali Abd El Razik M.B.B.Ch

Under supervision of

Dr. Ahmed Essam Kandil

Assistant Professor of Orthopedic Surgery Faculty of Medicine, Cairo University

Dr. Ihab Ibrahim El Dessouky

Lecturer of Orthopedic Surgery Faculty of Medicine, Cairo University

Cairo University
Faculty of Medicine
2013

Acknowledgement الحمد لله رب العالمين

First, thanks to "God" without His help, this work could not be accomplished.

I would like to express my deepest gratitude and sincere thanks to Dr. Ahmed Essam Kandil, Assistant Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University, for his guidance, great help and support throughout supervising this work. No words can fulfill his height.

My deepest appreciation to Dr. Ihab Ibrahim El Dessouky, Lecturer of Orthopedic Surgery, Faculty of Medicine, Cairo University, for his support and advice throughout supervising this work. Without his help, the completion of this work was impossible.

Finally, great thanks for all staff members in Orthopedic Department, Cairo University, for their endless devotion of teaching.

Abstract

Reviewing literature revealed that, total knee arthroplasty is gold standard for treatment of knee joint replacement and minimally invasive TKA is rapidly gaining the attention of the orthopedic community. Published data suggest better range of motion, less blood loss, and a shorter length of stay with minimally invasive TKA as compared with standard TKA. The long-term results for these minimally invasive techniques are yet not available.

Key words

Minimally invasive knee arthroplasty

Contents

Subject	Page
Introduction	1
Aim of the work	3
Anatomy of the knee joint	4
Bbiomechanics of the knee joint	21
Minimally invasive surgery for total knee arthroplasty	36
Arthroscopic-Assisted Techniques	68
Computer Navigated TKA	72
Unicompartmental knee arthroplasty	99
Patellofemoral arthroplasty	116
Advantages and complications of TKA	125
Summary	137
References	139
Arabic summary	

List of abbreviations

ACL	Anterior collateral ligament
AF	anatomical axis of femur
AKP	Anterior knee pain
AL	Arcuate ligament
AP	antero-posterior
AT	anatomical axis of tibia
BMI	Body mass index
CAD	computer-aided design
CAOS	Computer assisted orthopaedic surgery
CAS	Computer-assisted surgical
CPM	Continuous passive motion
CT	Computed tomography
2D	two dimensions
3D	three dimensions
DVT	Deep venous thrombosis
DRB	dynamic reference body
EM	Electromagnetic
KBL	knee base line
KSS	Knee Society Score
LCL	Lateral collateral ligament
LCS	Low contrast stress
LFC	Lateral femoral condyle
LMWH	Low molecular weight heparin
MAF	mechanical axis of femur
MAT	mechanical axis of tibia
MCL	Medial collateral ligament
MIS	Minimally in vasive surgery
MPP	Median parapatellar
MRI	Magnetic resonance imaging
OA	Osteoarthritis
PCA	Patient controlled analgesia
PCL	Posterior collateral ligament
PE	Pulmonary embolism
PFJ	patellofemoral joint
PST	patient-specific templates

PT	Popliteus tendon
QS	Quadriceps saving
RCTs	Randomized controlled trial
ROM	Range of motion
RP	rapid prototyping
SD	standard deviation
TKA	Total knee arthroplasty
UCLA	The University of California Los Angeles
UHMWPE	Ultra-high molecular weight polyethylene
UKA	Unicompartmental knee arthroplasty
USA	United States of America
VMO	Vastus medialis obliquus muscle
WOMAC	Western Ontario and McMaster Universities Osteoarthritis Index

List of figures

n.	Title	Page
1	Skyline view of the knee showing, the normal patella femoral articulation	6
2	Incongruent tibio-femoral articulation with asymmetrical femoral condyles	7
3	The medial [M] and lateral menisci [L]	8
4	Anterior cruciate ligament	10
5	the posterior cruciate ligament	11
6	posterior cruciate ligament bands	12
7	llio-tibial tract	13
8	Lateral collateral ligament	14
9	(A) Popliteus muscle. (B)The three origins of popliteus muscle	15
10	A.L.: Arcuate ligament, L.C.L.: lateral collateral ligament, P.T.: Popliteus tendon	16
11	The skin incision	19
12	The skin incision	22
13	Simultaneous rolling and gliding	22
14	J-shaped centre of rotation	22
15	The functional two units of the medial collateral ligament	25
16	Role of PCL in antroposterior stability of the weight bearing flexed knee.	27
17	Resultant force of the quadriceps and patellar tendon forces	29
18	Patellofemoral contact zones change with knee flexion	29
19	Forces on patellar components	30
20	Q-angle	31
21	Mechanical and anatomical axes of lower limb	33
22	Rotational alignment of total knee components	35
23	Standard Genesis II; MIS Genesis II Femoral A-P cutting block	44
24	Standard genesis ii tibial cutting block [bottom] MIS genesis ii tibial cutting block	44
25	MIS modular tibial component	45
26	Preparing a femur with a right-sided MIS valgus/rotation Guide	45
27	Anatomical and mechanical axes of femur and tibia	46
28	Various quadriceps exposure	48
29	Median parapatellar, (QS), modification of median parapatellar, mini (MV), and	48
	mini (SV)	
30	Skin incision, U sign, V sign	50
31	The limited medial parapatellar arthrotomy	51
32	Skin incision for the minimally invasive quadriceps-sparing TKA	53
33	(VMO) tendon	55
34	The arthrotomy for the subvastus exposure	55
35	Straight skin incision in the minimally invasive surgery (MIS)	59
36	Arthrotomy with mini-midvastus approach	59
37	With little force, the patella is retracted completely into the lateral gutter	61
38	The distal femur is cut with a modified intramedullary resection guide	61

39	The extramedullary tibial guide	62
40	After the distal femur has been cut, the tibia is prepared next	63
41	The distal femoral cutting guide	63
42	The patellar clamp leaves a predetermined thickness for Resurfacing	66
43	The metal protector is centered on the cut surface of the patella	66
44	Modular tibial components facilitate the cementing process and it is easiest to	67
	cement the tibia first	
45	With the final components in place, patellar tracking and range of motion are	67
46	assessed Supported log technique	69
47	Suspended leg technique The patella is retreated leterally and the quadricens mechanism	69
48	The patella is retracted laterally and the quadriceps mechanism	69
49	Downsized 4-in-1 cutting instruments Anterior referencing system	69
50	MIS-TKA with posterior referencing system	69
51	Suspended leg with exposure to the posterior joint. Gravity distracts the joint,	69
JI	enhancing exposure to the posterior joint to improve visualization	09
52	Examination of patellofemoral tracking after implants is in position	70
53	Arthroscopic instruments utilized to examine the joint. Can be used "dry" [without	70
33	fluid] with the capsule open or with fluid with the capsule closed	70
54	Capsule closed and soft tissue impinging the lateral gutter. This is easily removed	70
55	Patellofemoral tracking after capsular closure arthroscopically visualized	70
56	Arthroscopic view of retained posterior Cement using 70°scope – later removed	70
57	Traditional T K R Patella Everted	70
58	Suspended Leg Approach Patella Retracted	71
59	The optical tracking system	76
60	Active trackers attached to bicortical screws rigidly fixed to the femur and tibia	78
61	Femoral head calculation	80
62	Define tibial implant component	81
63	Define a-p direction of the tibia	82
64	Define medial tibia plateau (bone morphing)	82
65	Define Lateral Epicondyle	83
66	Define anterior femoral sulcus	84
67	Define femoral mechanical axis	84
68	Whiteside line	85
69	Confirm position of femoral implant	87
70	Confirm position of tibial implant	87
71	Calculate anterior alignment	89
72	Confirm anterior alignment	90
73	LCS tibial plane navigation	91
74	Verify tibial plane	91
75	Ligament balancing in extension	92
76	Ligament balancing in flexion	93
77	Anteroposterior (A), lateral (B), and Merchant view (C) radiographs of a patient 1	112

	year after all-polyethylene, fixed-bearing unicompartmental arthroplasty	
78	Anteroposterior (A), lateral (B), and Merchant view (C) radiographs of a patient 1	113
	year after all-polyethylene, fixed-bearing unicompartmental arthroplasty	
79	Intraoperative photograph (A), taken from the head of the operative table,	123
	showing the intact anterior transverse meniscal ligament	

List of of tables

1	Comparison among different MIS approaches ,arthroscopic assisted technique &	96
	computer navigated technique.	

Introduction

Minimally invasive surgery (MIS) in orthopedics essentially began with the introduction of the arthroscope. Initially, arthroscopy was relatively primitive, with limited goals and time-consuming procedures. It has gradually evolved to become one of the standard of treatment currently used for many orthopedic procedures.

Most total joint arthroplasties have been performed through an extensile approach, with complete visualization of the joint and supporting soft tissue structures. [1]

Several groups are attempting to develop an MIS approach for total knee arthroplasty. The indications for the surgeries remain the same, but the surgical technique has demonstrably changed. MIS techniques approach each joint in a new, modified way that violates fewer muscular structures and surrounding tissues. The length of the surgical incision is not the defining factor. The approaches require modified instruments. The components must be placed in the proper position, similar to conventional approaches. The surgeon must draw on previous clinical experience and knowledge of the local anatomy to support the technique that presents a completely modified view of the joint. The surgical procedures require careful planning and preparation. The incision for the surgery must be properly positioned to permit the required exposure. The learning process is a continuum. The surgical approach can be gradually decreased as the surgeon's experience improves. The potential advantages of MIS techniques include reduced pain, earlier mobilization, shorter hospital stays, quicker rehabilitation, decreased morbidity, and decreased costs. [2]

Introduction

Initially the MIS technique was applied to unicondylar knee replacement. In the mid-1990s, **Repicci and Eberle** designed a unicondylar knee prosthesis, which was implanted with an MIS approach. The procedure was essentially a freehand technique that used limited instrumentation. **Repicci's** work created great interest in the United States and his follow up reports substantiate good results up to eight years after the surgery. MIS unicondylar arthroplasty has naturally led to the investigation of MIS total knee arthroplasty. [3]

The first step in this transition to decrease the actual incision and perform a mini-TKA. The arthroplasty is performed through a 10- to 14-cm skin incision, with a limited medial parapatellar arthrotomy or midvastus approach. Attention must be given to the local anatomic landmarks to achieve correct component position and alignment. The success with minimal-incision TKA is evolving toward MIS-TKA which requires modification of the instrumentation because the skin incision and arthrotomy are further reduced. As the incision and arthrotomy become smaller, so does the field of view. Computer assisted instruments and navigation may be helpful with this aspect of the knee surgery. [4]

AIM OF THE WORK

This essay will discuss the anatomy, biomechanics of the knee joint and will discuss the alternatives of conventional total knee arthroplasty; minimally invasive techniques in TKA ,unicopartmental knee arthroplasty ,patellofemoral arthroplasty , computer assisted navigation in total knee arthroplasty , advantages and complications of these new techniques.

ANATOMY OF THE KNEE JOINT

The knee joint is the largest and most complicated articulation in the human body. In this joint, three functional spaces exist: the medial femoro-tibial space, the lateral femoro-tibial space, and the patellofemoral space. The knee joint is a synovial joint. It is a modified hinge joint, in addition to flexion and extension, its motion has a rotary component. It is a compound joint that includes two condylar joints between the femur and the tibia and a saddle joint between the patella and the femur. [5]

The stability and mobility of the knee are dependent on complex interactions between: [6]

I- Osseous factors (shape of the articulating surfaces)

II- Soft tissue factors:

-Passive stabilizers (capsule, menisci and ligaments).

-Active stabilizers (muscles).

(I) osseous anatomy:

Femoral part:

The femoral condyles are asymetrical, the larger medial condyle has more symmetrical curviture. the lateral condyle is slightly shorter than the medial. the long axis of the lateral condyle is slightly longer and is placed in am more sagittal plane than the long axis of the medial condyle.

Anatomy of the knee joint

The inter-conylar notch separates the two condyles distally and posteriorly in knee arthroplasty, The femoral component is aligned parallel to the transepicondylar axis, which passes through the center of the prominence of the lateral epicondyle and the center of the sulcus of the medial epicondyle.[6]

Tibial part:

The tibial articular surfaces are the cartilage clothed condyles; each with a central hollow and peripheral flattened area. the articular surface of the medial tibial condyle is oval and larger with its long axis in the sagittal plane, whereas the articular surface of the lateral condyle is circular, smaller and more convex than the medial condyle. however, the lack of confirmity between the femoral and tibial articular surfaces is more apparent than real in the intact knee the menisci enlarge the conact and increase the confirmity of the joint surfaces. [7]

Both surfaces have a posterior inclination of approximatly 10 degrees with respect to the shaft of the tibia. On the anterior aspect of the tibia the tuberosity is the most prominant feature and is the attachment site of the patellar tendon. approximately 2 to 3 cm lateral to the tibial tubercle is Gredy's tubercle, which is the insertion site of the iliotibial band (ITB). [6]

patella:

The patella, the largest sesamoid bone in the body sits in the femoral trochlea. it is an asymetrical oval with its apex directed distally the fibers of the quadriceps tendon envelope it anteriorly and blend with the patellar ligament distally posterior aspect of the patella is described as possessing seven facets. the medial and lateral facets are divided vertically into approximately equal thirds, whereas the