VENTRICULOPERITONEAL SHUNT MALFUNCTION [A Review]

Thesis

Submitted for Complete Fulfillment of The M.D. Degree in **Neurosurgery**

By

Wessam Samir Mohamed Soliman (M.B., B.Ch.; M.Sc., Cairo University)

Supervisors

Prof. Dr. Mohamed Lotfy M. Ibrahim

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Amr Ahmed Mancy

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Ramy Amin Kamel Ali

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Dr. Magdy Khairy El-Samra

Assistant Professor of Neurosurgery Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY 2010

بسم الله الرحمن الرحيم

وَقُل رَّبِّ زِدْنِي عِلْمًا

صدق الله العظيم (الآية: ١١٤، سورة طه)

ACKNOLEDGEMENT

First of all, I am deeply thankful to **Allah** by the grace of whom this work was possible.

I am also highly indebted to Prof. Dr. Mohamed Lotfi Ibrahim, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his kind support, sincere supervision, advices, guidance and precious participation throughout this work.

I wish also to express my sincere gratitude and thanks to Prof. Dr. Amr Ahmed Mancy, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his kind supervision, sincere encouragement, valuable advices and instructions throughout this work.

It is my pleasure to express my deepest gratitude and sincere thanks to Prof. Dr. Ramy Amin Kamel Ali, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his generous concern, sincere supervision, valuable suggestions and cooperation, continuous advice and support saving no effort or time in reading each word in this work. To him I will always be grateful.

I would like to express my appreciation and thanks to Dr. **Magdy Khairy El-Samra**, Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his valuable cooperation in patients' referral.

I would like to express my gratitude to Dr. Allaa Abd El-Fattah, Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his help, guidance and precious advises in this work.

I would like to express my gratitude to all the members of Neurosurgery Department for their help and support.

I am especially grateful to my family especially my wife for her endless patience and support throughout this work.

Wessam Samir

CONTENTS

		Page
•	Introduction	1
•	Review of Literature	4
	 Function Anatomy of the Cerebrospinal Fluid 	Pathways 5
	。 Physiology	20
	。 Hydrocephalus	26
	。 Clinical Features of Hydrocephalus	31
	o Management of Hydrocephalus	40
	。 Shunt Systems	46
	o Ventriculoperitoneal Shunt Insertion	62
	o Shunt Malfunctions	71
	o Over-drainage	86
	Miscellaneous Complications	91
	o Shunt Infection	95
•	Patients and Methods	101
•	Results	109
•	Case Presentation	140
	Discussion	170
•	Conclusion	185
•	Summary	188
•	References	191
•	Arabic Summary	209

LIST OF FIGURES

No.	Title	Page
1	Ventricles of the brain	7
2	Cast of the ventricles of the brain, left lateral aspect	8
3	Median sections. A shows important features of the	10
	brain stem and a cross section of the midbrain	
4	The ventricular system of the human brain	12
5	Choroid plexus of the ventricles	13
6	The meninges: Above panel is a midsagittal view	17
	showing the three layers of the meninges in relation to	
	the skull and brain. Below panels are blowups to show	
	details of arachnoid graduation in relation to the venous	
	sinus	
7	The course of the cerebrospinal fluid (CSF)	18
8	The blood-brain and blood-CSF barriers showing the	19
	daily formation of 500 ml of CSF	
9	Microscopic demonstration of choroid villi	21
10	Arachnoid granulation	24
11	Common sites and causes of CSF obstruction	30
12	The approach angle made by the endoscope for	43
	endoscopic third ventriculostomy	
13	Ventricular catheters	49
14	Schematic diagram of typical standard differential	51
	pressure valves	
15	Slit valve	51
16	Cordis Hakim valve system	52
17	Diaphragm valve (Codman)	52
18	Miter valve	53
19	Schematic of mechanism of method of achieving flow	54
20	regulation	
20	CSF flow control valve burr hole	55 55
21	Cordis orbis sigma	55
22	Delta valve	56
23	Antisiphon device	57
24	Programmable Hakim valve	58 50
25	The programmable shunt (Medtronic product site)	58
26	Programmable valves (Codman Product)	59
27	On-off device	60

No.	Title	Page
28	Three routes for insertion of ventricular shunt catheters: frontal, parietal and occipital	66
29	Placement of a frontal ventriculoperitoneal shunt	68
30	Plain x-ray showing shunt disconnection at the neck	84
31	Shows congenital causes in both groups	117
32	Shows acquired causes in both groups	118
33	Shows previous shunts surgery in both groups	119
34	Shows clinical presentation in group A	120
35	Shows clinical presentation in group B	121
36	Shows general condition in both groups	122
37	Show shunt longevity in group A	123
38	Show shunt longevity in group B	123
39	Shows results of examination of shunt device in both	125
	groups	
40	Shows results entry point of ventricular catheter in	126
11	proximal obstruction	107
41	Shows CT brain findings in both groups	127
42	Shows results of CSF simples in suspected cases of infection	129
43	Shows organisms isolated in culture positive cases	129
44	Shows the diagnosis of shunt malfunction in both groups	130
45	Shows findings in proximal revision	131
46	Shows findings in distal revision	133
47	Shows management of infected cases	135
48	Shows the management of shunt malfunction in both	136
	groups	
49	Shows number of cases in the follow-up period	137
50	Shows outcome in both groups	138

LIST OF TABLES

No.	Title	Page
1	Classification of Hydrocephalus	29
2	Key points for burr hole placement	65
3	Key master group A (open head)	110
4	Key master group B (Closed Head)	113
5	Shows the type and cause of hydrocephalus	117
6	Shows previous shunt surgery in both groups	119
7	Clinical presentation in group A	120
8	Clinical presentation in group B	121
9	General condition in group A and group B	122
10	Shunt longevity in group A and group B	123
11	Examination of shunt device in both groups	124
12	Entry point of ventricular catheter in proximal obstruction	125
13	Radiological findings in both groups	127
14	CSF examination	128
15	Diagnosis of shunt malfunction	130
16	Proximal revision	131
17	Distal revision	132
18	Management of infected cases	134
19	Shows the management of shunt malfunction in both groups	135
20	Follow-up	136
21	Shows outcome in both groups	138
22	Showing mortality rate in relation to the cause of malfunction in both groups	139
23	National Egyptian Shunt Registry Sheet (NESRS)	184

ABBREVIATIONS

CFVS : CSF flow-void signal CSF : Cerebrospinal fluid

CT : Computerized tomography

DP : Differential pressure

ETV : Endoscopic third ventriculostomy

EVD : External ventricular drain

HCP : Hydrocephalus

IQ : Intelligence quotient

ISF : Interstitial fluid LP : Lumboperitoneal

MRI : Magnetic resonance imagingNPH : Normal pressure hydrocephalus

NSR : national shunt registrySAH : Subarachnoid hemorrhageTLC : Total leukocytic count

US : Ultrasonography VA : Ventriculoatrial

VP : Ventriculoperitoneal

ABSTRACT

The benefits of ventriculoperitoneal shunts are well known in the management of hydrocephalus. Unfortunately, the complications associated with shunts are not uncommon. The aim of this work is to review the hydrocephalus and its management with discussing the causes of VP shunt malfunction and the obvious means to reduce their complications. The study was done on 50 cases with shunt malfunction, 48% were presented with shunt obstruction while 30% for infection, the remaining 22% of cases for miscellaneous complications. To conclude, selecting the proper device, improving the general condition of patients and good surgical technique can reduce the complications.

Keywords:

Malfunction

Ventriculoperitoneal shunt

Complications

Introduction

Introduction

Hydrocephalus is an abnormal accumulation of C.S.F within the ventricle and subarachnoid spaces; it is often associated with dilatation of ventricular system and increased ICP. It can be classified as obstructive (communicating and non-communicating) or non-obstructive.

Shunting is the standard management for hydrocephalus till now and recently endoscopic third ventriculostomy (ETV). Endoscopic third ventriculostomy is indicated in non-communicating type with obstruction at the level of or distal to the posterior third ventricle as an adequate stenosis or tumors obstructing third or fourth ventricle with high success rates exceeding 75% in carefully selected patients. However limitations include: infants; previous shunting; S.A.H; brain radiation; adhesion and certain tumors (Sainte Rose et al., 1995).

Ventricular shunts are inserted into certain body cavities as in the peritoneum, atrium, pleural cavity, the gall bladder and the subgaleal space. Several types of valves have been designed for shunting, this includes the pressure gradient valves (high and low pressure valves), flow controlled valves, antisiphon devices, gravity compensating devices and the new addition are the programmable valves (Rekate, 2002).

This ideal site for the ventricular catheter tip is just in front of the foramen of Monro, frontal, parietal or occipital (Albright et al., 1998). No single site has been shown to be superior to the rest, thus the surgeons familiarity with the shunt equipment is an important factor in its selection (Patrik et al., 1997).

SHUNT MALFUNCTION

Shunt malfunction may result from either under drainage or over drainage of C.S.F.

- Under drainage occurs if shunt becomes obstructed or disconnected. Obstruction may be in the proximal ventricular catheter, the valves, connectors or the distal end. The most common is proximal occlusion occurring in approximately 80% of the time (Epstein, 2000).
- Over drainage may result in slit ventricles, intracranial hypotension and subdural hematoma. About 10-12% of long term shunts will develop one of these within 6.5 years of initial shunting (**Pudenz** *et al.*, **1991**).

Shunt failure reaches its maximum within the first few months after surgery ranging from 25% to 40% at one year follow up. The risk of failure persists after this critical period and remains approximately 4-5% per year (**Drake** *et al.*, **1994**).

Patient and Methods:

All patients admitted in Kasr Al-Aini hospitals during the period of three years of the study where shunt insertion or revision will be the material of this study.

The reason of shunting; type of shunting; site of insertion, reason for revision; (proximal and distal); period between initial shunting and revision causes of malfunction are to be discussed.

Aim of Work:

- Review of literature hydrocephalus and its management by shunt
- Comparative study for the different cranial approaches for shunting.
- Highlighting the etiology of shunt malfunction and the possible ways of management.

REVIEW OF LITERATURE

FUNCTIONAL ANATOMY OF THE CEREBROSPINAL FLUID PATHWAYS

The anatomy of the major pathways traversed by the cerebrospinal fluid CSF will be considered in the following chapter in a functional sequence. At first, a description of the ventricular system is given, together with its linings. This includes the choroidal plexus; the main site of CSF secretion. It is followed by a description of the drainage mechanism of CSF. Special reference is given to the different physiological barriers of the central nervous system namely the blood-brain, brain-CSI and brain-interstitial fluid barriers.

The ventricular system:

The ventricles of the brain include the paired lateral ventricles, 3rd and 4th ventricles.

Lateral ventricles (ventriculus lateralis): The two lateral ventricles are irregular cavities situated in the lower and medial parts of the cerebral hemispheres, one on either side of the midline. They are separated from each other by a median vertical partition, the septum pellucidum, but communicate with the 3rd ventricle and indirectly with each other through the interventricular foramen of Monro. They are lined by a thin membrane; the ependyma covered by ciliated epithelium and contain cerebrospinal fluid. Each lateral ventricle is a C-shaped cavity which extends from its anterior horn in the frontal lobe in a continuous curve posteriorly (central part), then inferiorly, and finally anteriorly, to end in the temporal lobe as the inferior horn. From its convex posterior surface a posterior horn extends backwards to a variable extent into the occipital lobe (Gray's Anatomy, 2004).

The size and shape of this ventricle is very variable. In the young, the walls lie almost in opposition, while with increasing age and loss of neural tissue the ventricle expands and may reach a considerable size without an increase in its internal pressure (Gray's Anatomy, 2004).

The **anterior horn** or cornu of the lateral ventricle curves inferiorly into the frontal lobe from the interventricular foramen. It is triangular in coronal section .The narrow floor is formed by the rostrum of the corpus callosum; the roof and anterior wall by the trunk and genu of the corpus callosum; the vertical medial wall by the septum pellucidum and column of the fornix; the lateral wall by the bulging head of the caudate nucleus (**Gray's Anatomy, 2004**).

The **central part** of the ventricle: Also called **body** of the lateral ventricle, it is roofed by the trunk of the corpus callosum. Its medial wall, which decreases in height as it is followed posteriorly, is formed by the fornix and septum pellucidum anteriorly, and by the fornix posteriorly.

The floor consists from lateral to medial of the following structures:

- (1) The caudate nucleus.
- (2) The thalamostriate vein runs anteriorly in the groove between thalamus and caudate nucleus.
- (3) The stria terminalis runs with the thalamostriate.
- (4) A narrow strip of the dorsal surface of the thalamus.
- (5) The choroid plexus.
- (6) The fornix: anteriorly it is a rounded bundle but posteriorly it becomes progressively flattened and extends laterally into the floor of the lateral ventricle.

The posterior horn or cornu begins at the splenium of the corpus callosum, and extends posteriorly into the occipital lobe, tapering to a point. The roof, lateral wall, and floor are formed by a sheet of fibers (tapetum) from the splenium of the corpus callosum. The medial wall is invaginated by two ridges; the upper of these (bulb of the posterior horn) is formed by the fibers of the forceps major (**Gray's Anatomy**, 2004).

The inferior horn is the direct continuation of the ventricular cavity into the temporal lobe. It runs inferiorly, posterior to the thalamus, and then passes anteriorly, curving medially to end at the uncus. The lateral wall is formed by the tapetum of the corpus