PHYSIOLOGICAL STUDIES ON ACTIVE INGREDIENTS OF SAFFLOWER

PLANT (Carthamus tinctorius L.)

By ISMAIL MAHMOUD ALI MOHAMED SHAHAT

B.Sc. Agric. Sc. (Agric. Mechanization), Cairo University, 1995 M.Sc. Agric. Sc. (Agric. Engineering), Cairo University, 2002

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Agricultural Science
(Plant Physiology)

Department of Agricultural Botany Faculty of Agriculture Ain Shams University

Approval Sheet

PHYSIOLOGICAL STUDIES ON ACTIVE INGREDIENTS OF SAFFLOWER

PLANT (Carthamus tinctorius L.)

By ISMAIL MAHMOUD ALI MOHAMED SHAHAT

B.Sc. Agric. Sc. (Agric. Mechanization), Cairo University, 1995 M.Sc. Agric. Sc. (Agric. Engineering), Cairo University, 2002

This thesis for Ph.D. degree has been approved by:

Prof. Dr. Hekmat Yahya Ahmed Masoud Prof. of Plant Medicinal and Aromatic Plants, Faculty of Agriculture, Mansoura University	,		
Prof. Dr. Mohamad Abdel-Rasoul Mohamad			
Prof. Emeritus of Plant Physiology, Faculty of Agriculture, Ain	L		
Shams University			
Prof. Dr. Kawthar Aly Emam Rabie			
Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams	,		

Date of Examination: 19 /10/2010

University

PHYSIOLOGICAL STUDIES ON ACTIVE INGREDIENTS OF SAFFLOWER

PLANT (Carthamus tinctorius L.)

By ISMAIL MAHMOUD ALI MOHAMED SHAHAT

B.Sc. Agric. Sc. (Agric. Mechanization), Cairo University, 1995M.Sc. Agric. Sc. (Agric. Engineering), Cairo University, 2002

Under the supervision of:

Prof. Dr. Kawthar Aly Rabie

Prof. of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Hossam Hassan Ahmed Manaf

Assistant Prof. of Plant Physiology, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University

Dr. Hasnaa Abdel-Haseeb Gouda

Associate Research Prof. Emeritus of Medicinal Plants, Department of Medicinal Plants and Natural Products, National Organization for Drug Control and Research

ACKNOWLEDGEMENT

First, I am deeply thankful to **ALLAH**, by grace of home, the present work was released.

My deepest gratitude and sincere thanks are expressed with the great emphasis, to Professor Dr. Kawthar Aly Emam Rabie, Prof. of Plant Physiology and Head of Agric. Botany Department, Faculty of Agriculture, Ain Shams University, For her unfailing efforts, supervision, for her valuable and continuous guidance worthy advises, great help during the course of this investigation and her real contribution in writing this dissertation.

I'm most grateful to Dr. Hossam Hassan Ahmed Manaf Assistant Prof. of Agric. Botany, Faculty of Agriculture, Ain Shams University, for his supervision providing me with available guidance and for his helping and kindness.

I would like to express my deep gratitude and everlasting thanks to Dr. Hasnaa Abdel-Haseeb Gouda, Associate Prof. of Medicinal plants in National Organization for Drug Control and Research, for her supervision providing me with available guidance and for her helping and kindness.

Thanks are also extended to Prof. Dr. Ibrahim Seif El-Deen Prof. of Plant Physiology, Faculty of Agriculture, Ain Shams University, for his help in this work.

I am very grateful to all those who have contributed, in any way, to make this work possible. And I'm most grateful to all faculty members of Agric. Botany Department, Faculty of Agric., Ain Shams University for their continuous encouragement.

I would like to thank my wife for her helping and advices.

ABSTRACT

Ismail Mahmoud Ali Mohamed Shahat: Physiological Studies on Active Ingredients of Safflower Plant (*Carthamus tinctorius* L.). Unpublished Ph.D. Thesis, Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, 2010.

Two field experiments for safflower plant were carried out, at National Organization for Drug Control and Research in the Experimental Farm of Medicinal Plants at Kafr-Algabal Governorate Giza, Egypt. First experiment was laid out during two successive seasons of 2006/2007 and 2007/2008 in loamy sand soil to study the effect of compost (C) at levels of 5, 10, and 20 t/fed and rock amendment (R) at levels of 500 and 1000 kg/fed. Second experiment was laid out during two successive seasons of 2008/2009 and 2009/2010 in sandy loam soil to explore the response of safflower plants to foliar application with ascorbic acid (A) at concentrations of 100, 200, and 400 mg/l, humic substances (H) at concentrations of 2, 4, and 8 ml/l and active dry yeast (Y) at concentration of 2.5, 5 and 10 g/l as well as the control. The treatment of C₂₀R₁₀₀₀ had promoting influence in the most of vegetative parameters (plant height, number of branches/plant, number of leaves/ plant, number of inflorescences/ plant, leaf area and dry weight). The same treatment gave the highest mean values of petal and seed yields (g/plant) also enhanced active ingredients (carthamin, carthamidin, and oil). Treatment of C₂₀ gave the highest value of unsaturated fatty acids and oil quality. Ascorbic acid at 100 mg/l had improved petal and seed yields, oil content and oil yield. The treatment of H₄ gave the highest carthamidin content, while Y₁₀, H₂, H₄ gave higher carthamin compared with control. H₂ and Y₅ gave higher values of total unsaturated fatty acid, while Y5 gave the highest value of oil quality.

Key wards: Safflower, compost, rock amendment, yeast, ascorbic acid, humic substances, carthamin, carthamidin, oil, fatty acid.

CONTENTS

	ŀ
LIST OF TABLES	
LIST OF FIGURES	
INTRODUCTION	
REVIEW OF LITERATURE	
1. Importance of organic and rock amendments	
2. Influence of organic and rock amendments on plant	
2.1. Growth characters	
2.2. Yield	
2.3. Chemical constituents	
3. Importance of ascorbic acid, humic substances and yeast	
4. Influence of ascorbic acid, humic substances and yeast on	
plant	
4.1. Yield	
4.2. Chemical constituents	
MATERIAL AND METHODS	
1. Treatments	
1.1. Compost amendment	
1.2. Rock amendment	
1.3. Ascorbic acid	
1.4. Humic substances	
1.5. Active dry yeast	
2. Plant sampling	
2.1. Flowering stage	
2.2. Harvest stage	
3. Studied parameters	
3.1. Growth characters	
3.1.1. Plant height	
3.1.2. Number of branches per plant	
3.1.3. Number of leaves per plant	
3.1.4. Leaf area	

3.1.5. Dry weight	49
3.2. Yield and yield attributes	50
3.2.1. Number of inflorescences per plant	50
3.2.2. Petal yield per inflorescences	50
3.2.3. Petal yield per plant	50
3.2.4. Petal yield per fed	50
3.2.5. Weight of 100 seed	50
3.2.6. Seed yield per inflorescence	50
3.2.7. Seed yield per plant	
3.2.8. Seed yield per fed	50
3.3. Phytochemical compounds	0.
3.3.1. Yellow pigment (Carthamidin)	50
3.3.2. Red pigment (Carthamin)	51
3.3.3. Lipid extraction and determination	
3.3.4. Fatty acids separation and determination	52
4. Statistical analysis	53
RESULTS AND DISCUSSION	54
First experiment	. 54
1. Effect of amendments on morphological and growth character	s 54
1.1. Plant height	
1.2. Number of branches	
1.3. Number of leaves	57
1.4. Number of inflorescences	
1.5. Leaf area	60
1.6. Herb Dry weight	62
Effect of amendments on petal and seed yield	
2.1. Petal yield per inflorescences	66
2.2. Petal yield per plant and per fedden	69
2.3. Weight of 100-seeds	
2.4. Seed yield per head	
2.5. Seed yield per plant and per fedden	
3. Effect of amendments and active pigments	

3.1. Carthamidin content	78
3.2. Carthamidin yield per plant and fed	81
3.3. Carthamin content	83
3.4. Carthamin yield per plant and per fed	84
3.5. Oil content	87
3.6. Fixed oil yield per plant and per fed	90
3.7. Fatty acids constituents	92
3.8. Oil quality	95
Second experiment	100
1. Effect of Foliar application on petal yield and its attributes	100
1.1. Number of inflorescences	100
1.2. Petal yield per inflorescences	103
1.3. Petal yield per plant and per feddan	104
2. Effect of Foliar application on seed yield and yield attributes	107
2.1. Weight of 00-seeds	107
2.2. Seed yield per head	110
2.3. Seed yield per plant and per feddan	110
3. Effect of Foliar application on active ingredients	114
3.1. Pigments of safflower petals	114
3.1.1 Carthamidin content	114
3.1.2 Carthamidin yield	117
3.1.3. Carthamin content	118
3.1.4. Carthamin yield	120
4. Fixed oil of safflower seeds	122
4.1. Lipids (Fixed oil) content	122
4.2. Lipids (Fixed oil) yield	125
5. Effect of Foliar application on Fatty acids compositions and	
safflower oil quality	128
SUMMARY 137	
REFERENCES	145
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Mechanical and chemical properties of first	
	experimental soil	44
2	Mechanical and chemical properties of second	
	experimental soil	44
3	Chemical analysis of compost amendment	46
4	Physical and chemical analysis of rock amendment.	46
5	Chemical analysis of humic substances	47
6	Effect of compost, rock amendments and the	
	interaction between them on morphological and	
	growth characters of safflower (Carthamus	
	tinctorius L.) plant during flowering and harvest	
	stages of the two seasons	55
7	Effect of compost, rock amendments and the	
	interaction between both of them on petal and seed	
	yield of safflower (Carthamus tinctorius L.) plant	
	during flowering and harvest stages of the two	
	seasons	67
8	Effect of compost, rock amendments and the	
	interaction between them on petal pigments	
	(carthamidin and carthamin) of safflower	
	(Carthamus tinctorius L.) plant at flowering stage of	
	the two seasons	79
9	Effect of compost, rock amendments and the	
	interaction between them on seed fixed oil of	
	safflower (Carthamus tinctorius L.) plant during two	
	successive seasons	88
10	Effect of compost, rock amendments and the	
	interaction between them on oil components (fatty	
	acids) and oil quality of safflower (Carthamus	
	tinctorius L.) plant	96

11	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on number of	
	inflorescences and petals yield of safflower	
	(Carthamus tenctorius L.) plant at the flowering	
	stage during two successive seasons	101
12	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on seed yield of	
	safflower (Carthamus tenctorius L.) plant during two	
	successive seasons	108
13	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on petal pigments	
	(carthamidin and carthamin) of safflower	
	(Carthamus tinctorius L.) plant during two	
	successive seasons	115
14	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on seed fixed oil of	
	safflower (Carthamus tinctorius L.) plant during two	
	successive seasons	123
15	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on oil components	
	(fatty acids) and oil quality of safflower (Carthamus	
	tinctorius L.) plant	132

List of figures

No.		Page
1	Effect of compost and rock amendments on safflower plant height during flowering stage of the	
	two seasons	56
2	Effect of compost and rock amendments on No. of branches of safflower plant during flowering stage	
	of the two seasons	56
3	Effect of compost and rock amendments on No. of leaves of safflower plant during flowering stage of	
	the two seasons.	59
4	Effect of compost and rock amendments on number of inflorescences of safflower plant during flowering	
	stage of the two seasons	59
5	Effect of compost and rock amendments on leaf	
	area of safflower plant during flowering stage of the	
	two seasons	61
6	Effect of compost and rock amendments on herb	
	dry weight of safflower plant at harvest stage of the	
	two seasons	61
7	Effect of compost and rock amendments on petal	
	yield per inflorescences of safflower plant during	
	flowering stage of the two seasons	68
8	Effect of compost and rock amendments on petal	
	yield per plant of safflower plant during flowering	
	stage of the two seasons	68
9	Effect of compost and rock amendments on petal	
	yield per fed of safflower plant during flowering	
	stage of the two seasons	71
10	Effect of compost and rock amendments on weight	
	of 100-seed of safflower plant at harvest stage of	

	the two seasons.	71
11	Effect of compost and rock amendments on seed	
	yield per head of safflower plant at harvest stage of	
	the two seasons	74
12	Effect of compost and rock amendments on seed	
	yield per plant of safflower plant at harvest stage of	
	the two seasons.	74
13	Effect of compost and rock amendments on seed	
	yield per fed of safflower plant at harvest stage of	
	the two seasons	75
	Effect of compost and rock amendments on	
14	carthamidin content of safflower plant during	
	flowering stage of the two seasons	80
15	Effect of compost and rock amendments on	
	Carthamidin yield per plant of safflower plant during	
	flowering stage of the two seasons	80
16	Effect of compost and rock amendments on	
	carthamidin yield per fed of safflower plant during	
	flowering stage of the two seasons	82
17	Effect of compost and rock amendments on	
	carthamin content of safflower plant during	
	flowering stage of the two seasons	82
18	Effect of compost and rock amendments on	
	carthamin yield per plant of safflower plant during	
	flowering stage of the two seasons	85
19	Effect of compost and rock amendments on	
	carthamin yield per fed of safflower plant during	
	flowering stage of the two seasons	85
20	Effect of compost and rock amendments on oil yield	
	of safflower Plant at harvest stage of the two	
	seasons	89
21	Effect of compost and rock amendments on oil yield	

	per plant of safflower plant at harvest stage of the	
	two seasons	91
22	Effect of compost and rock amendments on oil yield	
	per fed of safflower plant at harvest stage of the two	
	seasons	91
23	Effect of amendment (control) on fatty acids	
	composition of safflower oil	93
24	Effect of amendment (C_{20}) on fatty acids	
	composition of safflower oil	93
25	Effect of amendment (R ₁₀₀₀) on fatty acids	
	composition of safflower oil	94
26	Effect of amendment $(C_{20}R_{1000})$ on fatty acids	
	composition of safflower oil	94
27	Effect of compost and rock amendments on fatty	
	acids of safflower oil at harvest stage of the two	
	seasons	97
28	Effect of compost and rock amendments on quality	
	of safflower oil at harvest stage of the two	
	seasons	97
29	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on inflorescences	
	number/plant at the flowering stage during two	
	successive seasons	102
30	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on petal yield per	
	inflorescences at the flowering stage during two	
	successive seasons	102
31	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on petal yield per	
	plant at the flowering stage during two successive	
	seasons	105
32	Effect of foliar application with ascorbic acid, humic	

	substances and active dry on petal yield per fed. at	
	the flowering stage during two successive	
	seasons	105
33	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on weight of 100 -	
	seeds at harvest stage during two successive	
	seasons	109
34	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on seed yield per	
	head at harvest stage during two successive	
	seasons	109
35	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on seed yield per	
	plant at harvest stage during two successive	
	seasons	111
36	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on seed yield per	
	fed. at harvest stage during two successive	
	seasons	111
37	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on carthamidin	
	content at flowering stage during two successive	
	seasons	116
38	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on carthamidin	
	yield per plant at flowering stage during two	
	successive seasons	116
39	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on carthamidin	
	yield per fed. at flowering stage during two	
	successive seasons	119
40	Effect of foliar application with ascorbic acid, humic	

	substances and active dry yeast on carthamin	
	content at flowering stage during two successive	
	seasons	119
41	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on carthamin yield	
	per plant at flowering stage during two seasons	121
42	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on carthamin yield	
	per fed. at flowering stage during two seasons	121
43	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on oil content at	
	harvest stage during two successive seasons	124
44	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on oil yield per	
	plant at harvest stage during two seasons	126
45	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on oil yield per fed	
	at harvest stage during two successive seasons	126
46	Effect of foliar application (control) on fatty acids	
	composition of safflower oil	129
47	Effect of foliar application (A_{100}) on fatty acids	
	composition of safflower oil	129
48	Effect of foliar application (H ₂) on fatty acids	
	composition of safflower oil	130
49	Effect of foliar application (Y_5) on fatty acids	
	composition of safflower oil	130
50	Effect of foliar application with ascorbic acid, humic	
	substances and active dry yeast on fatty acids	133
51	Effect of foliar application with ascorbic acid, humic	133
J 1	substances and active dry yeast on quality of	
	safflower oil	133
	Samowei oii	100