IMPROVEMENT OF STRAWBERRY PLANTS USING TISSUE CULTURE TECHNIQUES

By

FARIDA FAROUK ABDEL-MONEIM KABIL

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2004

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Vegetable Crops)

Department of Vegetable Crops
Faculty of Agriculture
Cairo University
EGYPT

2009

APPROVAL SHEET

IMPROVEMENT OF STRAWBERRY PLANTS USING TISSUE CULTURE TECHNIQUES

Ph.D. Thesis In Agric. Sci. (Vegetable Crops)

By

FARIDA FAROUK ABDEL-MONEIM KABIL

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2004.

Approval Committee

Dr. MOHAMED EMAM RAGAB Professor of Vegetable Crops, Fac. Agric., Ain Shams University	
Dr. AHMED ABDEL-MONEIM HASSAN	
Professor Emeritus of Vegetable Crops, Fac. Agric., Cairo University	
Dr. KHALED EI-SAYED ALI	
Professor of Vegetable Crops, Fac. Agric., Cairo University	
Dr. MOHAMED ABDEL-MAGEED BADAWI	
Professor Emeritus of Vegetable Crops, Fac. Agric., Cairo University	

Date: 12 / 7 / 2009

SUPERVISION SHEET

IMPROVEMENT OF STRAWBERRY PLANTS USING TISSUE CULTURE TECHNIQUES

Ph.D. Thesis
In
Agric. Sci. (Vegetable Crops)

By

FARIDA FAROUK ABDEL-MONEIM KABIL

B.Sc. Agric. Sci. (Horticulture), Fac. Agric., Cairo Univ., 1998 M.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2004

SUPERVISION COMMITTEE

Dr. MOHAMED ABDEL-MAGEED BADAWI Professor Emeritus of Vegetable Crops, Fac. Agric., Cairo University

Dr. KHALED El-SAYED ALI Professor of Vegetable Crops, Fac. Agric., Cairo University Name of Candidate: Farida Farouk Kabil Degree: Ph.D.

Title of Thesis: Improvement of strawberry plants using tissue culture

techniques.

Supervisors: Dr. Mohamed Abdel-Mageed Badawi

Dr. Khaled El-Sayed Ali

Department: Vegetable Crops

Approval: 12 / 7 /2009

ABSTRACT

The experiments of the present study were conducted in the Tissue Culture Lab., Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, Egypt, during the period from 2005 to 2008. The objectives of this work were to improve strawberry plants using tissue culture techniques by developing a successful protocol for tetrahaploid production in strawberry cvs Camarosa and Sweet Charlie using anthers and unpollinated ovaries, and select new strains from these cvs tolerant to salt stress in vitro. Closed floral buds (2-4 days before anthesis) were pre-treated at 4°C for different periods and cultured their anthers and ovaries on different media composition. Embryogenesis was performed from both anthers and ovaries and multiplication was induced to produce new shoots. Shoots were rooted and produced whole plantlets for adaptation. Results showed that cold pre-treatment was not efficient for producing the best ovule regeneration and production of tetrahaploid plants and both cultivars gave nearly similar results under the optimal conditions for ovule regeneration. On contrary, anthers needed 24 h cold pretreatment for producing embryogenic calli with cv. Sweet Charlie. Determination of ploidy level was carried out and examinations showed that plantlets produced from the ovule culture were tetrahaploid but 8 plantlets from 11 produced from anther's embryogenic calli were tetrahaploid and the rest were octaploid. For achenes, achenes were isolated from strawberry mature fruits of the studied cvs, stored in dark at 4 °C for different periods and exposed to scarification by hydrochloric acid followed by sterilization and rinsing in sterile distilled water for different periods. The germination percentage was 95% with cv. Camarosa and 97% with cv. Sweet Charlie after 5 weeks of cultivation combined with one month cold storage pre-treatment in dark at 4°C and 4h rinsing period at 10°C, in both studied cvs without significant differences between them. Based on the results obtained on embryogenesis of both anthers and ovaries, and achenes germination, the best medium and the best conditions for each explant were used in salinity experiment by adding Rashedy salt to the chosen media. The highest concentration of Rashedy salt for treating ovaries that produced embryogenesis, shoot multiplication, recovery and adapted plantlets was 5000 ppm and cv. Sweet Charlie was, significantly, the best for producing salinity tolerant plantlets in vitro from ovaries culture. Only 2 plantlets from cv. Sweet Charlie succeeded to be stable under 5000 ppm after acclimatization in the greenhouse. All plants produced from achenes in all salt concentrations were not able to overcome these concentrations in the greenhouse. The effect of salt stress on strawberry genetic stability was allowed to be examined through RAPD test and both of the tolerant strains of cv. Sweet Charlie were have genetic variation when compared with the original plants by using RAPD-PCR.

Keywords: strawberry - *Fragaria* - anther culture - ovary culture - embryogenesis - androgenesis - gynogenesis - tetrahaploid – achene culture - salinity - RAPD-PCR.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my husband Mohamed Y. Hazman and my sister Maryam for their patience and help, as well as to my parents and sons for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciations to **Dr. Mohamed A. Badawi** and **Dr. Khaled E. Ali** Professors of Vegetable Crops, Faculty of Agriculture, Cairo University for suggesting the problem, supervision, continued assistance and their guidance through the course of this study and writing of the manuscript.

My deepest gratitude to **Dr. Said A. Shehata** Professor and Head of Vegetable Crops Department, Faculty of Agriculture, Cairo University for providing the necessary facilities. I would like to express my gratitude to **Dr. Medhat El-Nagar** Professor of Agronomy, Faculty of Agriculture, Cairo University for his assistance in the statistical part.

My deepest gratitude to Mr. Said M. Bashandy, Department of Genetics, Faculty of Agriculture, Cairo University, for his assistance in the cytological studies.

Grateful appreciation is also extended to all staff members of Vegetable Crops Department, Faculty of Agriculture, Cairo University.

Special deep appreciation is given to my father, my mother, my husband, my brother and sisters. Also I feel deeply grateful to my little sons.

CONTENTS

NTRODUCTION	
REVIEW OF LITERATURE	
1. In vitro propagation of strawberry	
2. In vitro haploid production	
a. Strawberry haploid production	
b. In vitro haploid production in vegetables	
3. Achene culture	
4. Plant tissue culture techniques and improvement of salt tolerance	
5. Fingerprinting by RAPD-PCR	
MATERIALS AND METHODS	
RESULTS AND DISCUSSION	
1. Strawberry anther and ovary cultures	
2. Multiplication of regenerated plantlets produced from anther and ovary cultures	
3. Acclimatization of regenerated plantlets produced from anther and ovary cultures	
4. Chromosomal studies for plantlets produced from anthers and ovaries	
5. Achene culture, multiplication, and adaptation	
6. Selection of strawberry plantlets tolerant to salinity	
stress	
a. Selection of strawberry plantlets tolerant to salinity stress from anther and ovary cultures	y
b. Selection of strawberry seedlings tolerant to salini stress	ty
7. Fingerprinting of the <i>in vitro</i> selected salt-tolerant strawberry plantlets	
SUMMARY	
DEFEDENCES	

	Page
ABBREVIATIONS, EXPRESSIONS AND	99
SYMBOLS	
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
1.	Components of the studied media in all stages of gynogenic and androgenic regeneration	29
2.	Components of the studied media in all stages of androgenic regeneration.	31
3.	Components of the studied media in all stages of androgenic regeneration	32
4.	Components of the studied media in all stages of androgenic regeneration.	33
5.	Achenes germination media	34
6.	Chemical analysis of sea salt used in the study	38
7.	The primers used in random amplified polymorphic DNA	42
8.	Ovary embryogenesis of strawberry cvs Camarosa and Sweet Charlie	51
9.	Shoot multiplication of gynogenic strawberry cvs Camarosa and Sweet Charlie	54
10	Plantlets adaptation of gynogenic strawberry cvs Camarosa and Sweet Charlie	59
11	Achene germination (%) of strawberry cvs Camarosa and Sweet Charlie after 5 weeks of cultivation	63
12	Number of adapted strawberry seedlings of cvs Camarosa and Sweet Charlie produced from achenes culture	65
13	Embryogenesis of ovaries and shoot multiplication on different concentrations of salts	68
14	Gynogenic recovery and adapted plantlets on different concentrations of salts	69

No	Title	Page
15	Seed germination percentage and shoots multiplication on different concentrations of salts	72
16	Recovery and adapted seedlings on different concentrations of salts	73
17	Scoring of RAPD marker (OPC-01)	76
18	Scoring of RAPD marker (OPB-08)	77
19	Scoring of RAPD marker (OPA-10)	77
20	Scoring of RAPD marker (OPB-15)	77
21	Scoring of RAPD marker (OPB-18)	78

LIST OF FIGURES

No	Title	Page
1.	Strawberry floral bud	45
2.	Strawberry anther culture (first method)	46
3.	Strawberry anther culture (second method)	46
4.	Strawberry anther culture (first and second methods – unembryogenic calli)	47
5.	Strawberry anther culture (second method - callus initiation and plantlet formation)	47
6.	Strawberry anther culture (second method - recovery plantlet produced from anther culture)	49
7.	Strawberry ovary culture (increasing the volume of the ovaries and turning to green color)	51
8.	Strawberry ovary culture (receptacle gave hard callus and some of the ovaries induced small plantlets)	52
9.	Strawberry ovary culture (induced gynogenic recovery plantlet)	52
10.	Strawberry shoot multiplication on MGO medium which induced large number of shoots from the original one	55
11.	Strawberry shoot isolation from the multiplicated shoot	56
12.	Transferring shoots to the rooting medium (R)	57
13	Plantlets prepared for adaptation	58
14	Steps of plantlets adaptation	58
15	Chromosome counting (cv. Sweet Charlie)	60
16	Androgenic plantlets having yellow pale leaves	61

No	Title	Page
17	Greenhouse strawberry mature fruits	61
18	Achene germination on the different media	64
19	Seedlings of germinated strawberry achenes	64
20	Anthers died on medium contained salt	66
21	Embryogenesis of ovaries on 5000 ppm of salt	67
22	Gynogenic plantlets tolerant to 5000 ppm salt	69
23	Gynogenic plantlets tolerant to 5000 ppm salt after adaptation stage	70
24	Achene germination on different concentrations of salt	71
25	RAPD-PCR products of genomic DNA from 3 strawberry plants	74
26	RAPD-PCR products of genomic DNA from 3 strawberry plants	76
27	Selected strawberry strains	80

INTRODUCTION

The cultivated strawberry (*Fragaria* ×*ananassa* Duch.) is grown in most arable regions of the world. It is one of the most valuable fruit crops in the world, there have been relatively little application of biotechnology in research or breeding efforts on this crop.

Strawberry (F. ×ananassa Duch.) is a natural hybrid of F. chiloensis (L.) P. Mill. and F. virginiana Duch. It is a perennial, stoloniferous herb which belongs to the Rosaceae family. Strawberries have traditionally been a popular delicious fruit for its flavor, taste, fresh use, freezing and processing. It contains relatively high quantities of ellagic acid, which has a wide range of biological activity (Sakila et al., 2007).

Cultivated strawberry is octaploid ($2n = 8 \times = 56$ chromosomes). Traditional breeding efforts to improve strawberry quality and yield are labor intensive, costly, and time-consuming, since many generations of crossing and selection are routinely required for cultivar development.

Tissue culture techniques in strawberries can contribute to reduction of both time and effort needed in a breeding programme aimed at achieving high homozygosity in octoploid strawberries (Hennerty and Sayegh, 1996).

Reducing the ploidy level of breeding material via gynogenesis may accelerate plant improvement efforts by more direct exposure of genetic traits at the haploid level, by phenotypic expression of gametes for assessment of ovule-donor potentials, and, together with chromosome redoubling techniques, by the production of highly homozygous lines for further use as parental lines.

The technologies for haploid and dihaploid production in vitro are now widely used to produce new cultivars and for genetic analysis of molecular biological research on many important agricultural crops. Many problems, however, remain and these limit extensive application of the technologies in modern breeding programmes (Atanassov *et al.*, 1995)

The *in vitro* germination of the strawberry plant achenes constitutes a necessary stage in the production of sterile seedlings essential to any process in biotechnology as genetic transformation. However, the germination of achenes is often poor. (El Hamduni *et al.*, 2001)

In vitro selection of strawberry on salt containing media during germination and early seedling growth allowed obtaining clones with increased salinity tolerance. This confirms practical value of the presented approach. The method is relatively simple and inexpensive. It may become an important tool in strawberry stress tolerance breeding (Dziadczyk *et al.*, 2003).

The objectives of the present study were to improve strawberry plants using tissue culture techniques by developing a successful protocol for tetrahaploid production in strawberry cvs Camarosa and Sweet Charlie using anthers and unpollinated ovaries, and select new lines from these cvs tolerant to salt stress *in vitro*.

REVIEW OF LITERATURE

Plant tissue culture refers to growing and multiplication of cells, tissues and organs on defined solid or liquid media under aseptic and controlled environment. Plant tissue culture technology is being widely used for large-scale plant multiplication. The commercial technology is primarily based on micropropagation, in which rapid proliferation is achieved from tiny parts. Plant tissue cultures are initiated from tiny pieces, called explants, taken from any part of a plant. Practically, all parts of a plant have been used successfully as a source of explants. In practice, the explant is removed surgically, surface sterilized and placed on a nutrient medium to initiate the mother culture, that is multiplied repeatedly by subculture. The cultured cells and tissue can take several pathways. The pathways that lead to the production of true-to-type plants in large numbers are the preferred ones for commercial multiplication. The process of micropropagation is usually divided into several stages i.e., prepropagation, initiation of explants, subculture of explants for proliferation, shooting and rooting, and hardening. These stages are universally applicable in large-scale multiplication of The delivery of hardened plants. micropropagated plants to growers and market al so requires extra care (Ahloowalia *et al.*, 2004).

Plant tissue culture techniques are essential to many types of academic inquiry, as well as to many applied aspects of plant science. In the past, plant tissue culture techniques have been used in academic investigations of totipotency and the roles of hormones in