

Effect of Resilient Attachment versus Relieved Telescopic Retainer on Partial Denture Abutment Supporting Structure

A thesis

submitted to prosthodontics department, in partial fulfillment of the requirements for master degree in

Prosthodontics

Presented by

Khaled Ibrahem Alsaid Mattar

B.D.S (2002) Ain Shams University

Faculty of Dentistry
Ain-Shams University
2010

Supervisors

Dr. HANY I. EID

Professor of Prosthodontics

Faculty of Dentistry - Ain Shams University

Dr. RAMI MAHER GHALI

Lecturer of Prosthodontics

Faculty of Dentistry - Ain Shams University

"ولئن شكرتم لأزيدنكم" صدق الله العظيم

الحمد لله الذي وفقني لإتمام هذه الرسالة وما كنت لأصل إلى هذه الحمد لله الذي وفقني النتيجة إلا بفضله سبحانه وتعالى.

إهداء

الي أبى وأمى الغالبين الذين بذلوا كل غالى ونفيس طوال حياتى كى أحمل أصل الله أصل الل

إلى إخوتي الذين طالما شجعوني على إتمام در استي

إلى زوجتي الحبيبة التي كانت لي خير عون

Acknowledgment

Acknowledgment

I would like to express my deep and sincere gratitude to my supervisor, *Prof. Dr. Hany I. Eid* Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University. His understanding, encouraging, personal guidance and fatherly advice have had a remarkable influence on my work in the present thesis.

I wish to express my warm and sincere thanks to *Dr. Rami Maher Ghali* Lecturer of Prosthodontics, Faculty of Dentistry, Ain Shams University. for his valuable advice and friendly help. His extensive discussions around my work and interesting explorations have been very helpful for this thesis.

I wish to extend my warmest thanks to *Prof. Dr. Mahmoud H. Elafandi* Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University. For his detailed review, constructive criticism and excellent advice during the preparation of this thesis.

Countless thanks are extended to *Dr. Khaled Keraa dentist* for their devoted effort in the statistical analysis of this study.

Special thanks to *Prof. Dr. Rizk B. Girgis* Professor of maxillofacial surgery, London University. For his great help in my whole life generally and specially in this study.

Many thanks are also extended to *Mr. Kareem Rizk* Dental technician, for his kind help during the laboratory part for this study.

Khaled Matter

Contents

•	Introduction	1
-	Review of literature	3
	* Problem with bilateral distal extension removable	
	partial denture	3
	* Management of bilateral distal extension	
	removable partial dentures	5
	* Telescopic crown	.10
	Definition	10
	Indication.	10
	Types1	l 1
	Advantage	.15
	Disadvantage	.17
	*Precision attachment	.21
	Definition	.21
	Classification.	.21
	*Methods of evaluating the effect of removable	
	partial denture on the supporting structure	2
•	Aim of the study	40
	Material and methods	<i>1</i> 1

-	Results	60
-	Discussion	70
-	Summary	78
-	Conclusions	80
-	References	81
_	Arabic summary	

List of tables

<u>Page</u>
Table (1): The mean differences, standard deviation (SD) values
and results of paired t-test for the changes by time in mean bone height of attachment group
Table (2): The mean differences, standard deviation (SD) values
and results of paired t-test for the changes by time in mean
bone height of telescopic crown group
Table (3): The means, standard deviation (SD) values and results
of Student's t-test for comparison between bone loss in the two groups
Table (4): The mean differences, standard deviation (SD) values
and results of paired t-test for the changes by time in mean Pocket depth of attachment group
Table (5): The mean differences, standard deviation (SD) values
and results of paired t-test for the changes by time in mean
pocket depth of telescopic crown group67
Table (6): The means, standard deviation (SD) values and results
of Student's t-test for comparison between changes in pocket
depth of the two groups69

List of figures

<u>page</u>
Fig (1): secondary impression for lower arch using putty and
light body(poly venyle silocsane)45
Fig (2): the metal crown with male portion on the cast
Fig (3): try-in of the porcelain fused to the metal crowns in
the patient's mouth with male part of attachment48
Fig (4): overall impression using medium bodied rubber
impression material, the veneered crowns was removed
with impression
Fig (5): The finished and polished partial denture with attachment
(fitting surface)51
Fig 6: The finished and polished partial denture with attachment
(polished surface)51
Fig (7): secondary impression with medium bodied rubber
impression after cementation of primary coping54
Fig (8): the primary coping cemented in patient
mouth
Fig (9): altered cast impression technique using zinc oxide
eugenol impression material55
Fig (10): The finished and polished partial denture with
telescopic retainer
Fig (11): measurement of the crestal bone for group A.
A vertical line was drawn from the lower border of male part
of the attachment at junction between the male part and
the crown 59

Fig (12): measurement of the crestal bone for group B from a
plane through the highest point of the occlusal surface
and perpendicular to the vertical plane59
Fig (13): changes by time in mean crestal bone height of
attachment group
Fig (14): changes by time in mean crestal bone height of telescopic
crown group63
Fig (15): the mean changes in crestal bone height in two
groups during follow up period
Fig (16): changes by time in mean pocket depth of
attachment group67
Fig (17): changes by time in mean pocket depth of telescopic
crown group
Fig (18): the mean changes in pocket depth in two groups
during follow up period

Introduction

INTRODUCTION

Achieving long-term success in the restoration of partially edentulous arch with removable partial denture require the protection and preservation of the supporting tissue.

Distal extension removable partial denture is subjected to vertical, horizontal, oblique and rotational forces. These forces may become adverse during functional and parafunctional activities. (1)

Rotational component of vertical tissueaword and tissueaway forces result from lack of distal abutment. Horizontal forces are the result of the vertical forces applied to one side of the bilateral removable partial denture and lateral movement of the mandible during mastication. While oblique forces result from the combination of the vertical and lateral forces. In all types of forces, the abutment tooth becomes a fulcrum. (2)

Several retainers exhibiting stress-releasing effect have been introduced to retain removable distal extension partial dentures, and reduce torque on abutments. Although the clasp retained removable partial dentures are commonly used, however, telescopic dentures and attachment denture are now widely used as an acceptable modality for partially edentulous patients because both of them show good esthetic advantages than clasp retained removable partial denture. (3)

The several advantages listed in the literature for both telescopic crown and precision attachment made the appropriate selection of either of them difficult. Accordingly, this study was conducted to assess and compare the effect of telescopic crown and extracoronal attachment on the denture supporting structure in long span bilateral distal extension cases.

Review of literature

Distal extension removable partial denture is defined by the academy of prosthodontics as a removable dental prosthesis that is supported and retained by natural teeth only at one end of the denture base segment and in which a portion of the functional load is carried by residual ridge. (4)

According to Kennedy's classification of removable partial denture Kennedy class I is removable partial denture restoring bilateral edentulous area located posterior to the remaining natural teeth and Kennedy class II is removable partial denture restoring unilateral edentulous area located posterior to the remaining natural teeth. (4)

<u>Problems with bilateral distal extension removable</u> partial dentures:

1.Support:

The distal extension removable partial denture derives its support from two different types of tissues, the tooth representing a relatively non displaceable tissue and the residual ridge representing displaceable tissues. (5)

The problem of support mainly arises from:

a. Loss of posterior abutment which is the main problem in the distal extension removable partial denture cases. ⁽⁶⁾

b. Resiliency of the residual ridge tissues due to the viscoelastic nature of mucosa, so the mucosa will be displaced under occlusal load in a tissue ward direction. (7)

2. Torque on the abutment teeth:

The resiliency of the mucosa supporting denture base is 20-25 times greater than that of the periodontal ligament of the abutment teeth this cause rotation of denture base around the two main posteriorly placed rests when occlusal load are applied which cause torsional stresses on the abutment teeth, and possible traumatization of the ridges. (5)

3. Residual ridge resorption:

Since the edentulous ridges must always bear some part of the masticatory load, ridge resorption is likely to occur which decrease the fit of denture base and increased the stresses and torquing on the abutment teeth. (8)

Stereophotogrammetry was used to study alveolar ridge changes with distal extension partial denture, it was found that a 10% loss of volume occurs after 12 months of denture insertion. ⁽⁹⁾

4. Retention:

According to the glossary of prosthodontic term, denture retention has been defined as the resistance in the movement of a denture away from its tissue foundation especially in a vertical direction or a quality of a denture that holds it to the tissue foundation and/or abutment. (4)