

Role of Dynamic Subtraction MRI in Detection of Hepatocellular Carcinoma

An Essay

Submitted for the partial fulfillment of the master degree in Radiodiagnosis

By

Asmaa Abd Elmonem Elnehrawy M.B., B.Ch.,

Supervised by

Prof. Dr. Aida Mohamed Elshibiny

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Assist. Prof. Dr. Ahmed Ghandour

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2010

دور التصوير بالرنين المغناطيسي باستخدام الطرح الديناميكي في تشخيص اورام الكبد السرطانيه

رسالة مقدمة توطئة لنيل درجة الماجستير في الأشعة التشخيصية

من الطبيبة أسماء عبد المنعم النحراوي

تحت إشراف

أد / عايدة محمد الشبيني

أستاذ الأشعة التشخيصية كلية الطب – جامعة عين شمس

أمر لل أحمد غندور أستاذ مساعد الأشعة التشخيصية كلية الطب – جامعة عين شمس

جامعة عين شمس – كلية الطب 2010

Acknowledgement

First and above all, thanks to merciful **God**, who enabled me to complete this work.

Grateful thanks to **Prof. Dr. Aida Mohamed Elshibiny**, Professor of Radiodiagnosis, Ain Shams
University for her great experience, kind heart, kind
help and assistance, valuable instructions and I
will always remain grateful.

I would like to express my deepest gratitude to Ass. Prof. Dr. Ahmed Ghandour, Assist. Professor of Radiodiagnosis, Ain Shams University, who honored me by his kind help and assistance.

Many thanks for my mother, my father, my husband, and my sisters. Finally, I would like to thank all Members of the Radiodiagnosis Department, Ain Shams University.

Contents

Title	Page	
	_	
Introduction and Aim of the	1	
Work		
Anatomy of the Liver	4	
Pathology	27	
Technique of Examination		
MRI Manifestations		
Summary and Conclusion		
References		
Arabic Summary		

List of Abbreviations

ATOO	A
AJCC	American Joint Committee on Cancer
AO	Aorta
CM	Contrast media
CT	Computed tomography
EHE	Epithelioid hemangioendothelioma
FNH	Focal nodular hyperplasia
FRFSE	Fast recovery fast spin-echo
FSE	Fast spin echo
GDA	Gastro duodenal artery
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HIV	Human immune deficiency virus
HV	Hepatic vein
IMV	Inferior mesenteric vein
IVC	Inferior Vena Cava
MRI	Magnetic Resonance Imaging
SGE	Spoild gradient echo
SMV	Superior mesenteric vein
SPIO	Superparamagnetic iron oxide
STIR	Short tau inversion recovery
T	Tesla
TE	Time to echo
TR	Time of repetition
UICC	International Union Against Cancer
US	Ultrasound

List of Table

Table		Page
Table (1):	Patient-based analysis by both methods for	108
	detection of hepatocellular carcinoma	

List of Figures

Figure		Page
Fig. (1):	Superior (Diaphragmatic) surface of the	6
	liver	
Fig. (2):	Inferior (Visceral) surface of the liver	6
Fig. (3):	Segmental anatomy of the liver	10
Fig. (4):	Hepatic blood supply	12
Fig. (5):	Anatomy of the biliary system	17
Fig. (6):	(A) Coronal T1 MR Image shows relation of the	20
	liver to lower lung bases, heart as well as great	
	vessels	
	(B) Coronal T2 MR image shows relation of the	20
	liver to lower lung bases	
Fig. (7):	(A) T1-weighted spin echo MR image,	21
	superiorly demonstrates the hepatic veins	
	(B) T2-weighted spin echo MR image shows the	21
	hepatic veins	
	(C) T1-weighted spin echo MR image, show	22
	right and middle hepatic veins	
	(D) T2-weighted spin echo MR image	22
	(E) T1-weighted spin echo MR image	23
	(F) T2-weighted sequence	23
	(G) T1-weighted image	24
	(H) T2-weighted sequence	24
Fig. (8):	Specimen shows a well-circumscribed mass	30
	with extensive hemorrhage	
Fig. (9):	Gross pathologic features of classic FNH	33

Fig. (10):	(A) Hepatocellular carcinoma	41
	(B) Photomicrograph of HCC	41
Fig. (11):	(A) Fibrolamellar carcinoma. Resected	43
	specimen	
	(B) Photomicrograph demonstrates nests of	43
	fibrola-mmellar malignant cells	
Fig. (12):	Cholangiocarcinoma	49
Fig. (13):	MR images of a 48-year-old man with chronic	57
	hepatitis C cirrhosis	
Fig. (14):	Regenerative nodule in a 52-year-old woman	59
	with cirrhosis due to hepatitis C	
Fig. (15):	55-year-old man with hepatocellular carcinoma	63
Fig. (16):	Multiple breath-hold T1-weighted GRE	68
Fig. (17):	Metastatic liver lesion from breast cancer	71
Fig. (18):	Comparison between subtraction images	73
Fig. (19):	59-year-old man with hepatitis B	82
Fig. (20):	51-year-old man with chronic hepatitis B and C	83
Fig. (21):	58-year-old man with hepatitis C, cirrhosis, and	85
	1.9-cm hepatocellular carcinoma in segment VI of	
	liver	
Fig. (22):	63-years old man with pathologically proven HCC	86
Fig. (23):	Hepatocellular carcinoma (HCC) in a 63-year-old	87
	man with liver cirrhosis	
Fig. (24):	Nodule-within-a-nodule enhancement pattern	88
Fig. (25):	Pseudocapsule	89
Fig. (26):	Fibrolamellar HCC	90
Fig. (27):	A 51-year-old man with cirrhosis	93

Fig. (28):	Hyperintense nodule suggesting hepatocellular carcinoma in 43-year-old patient	94
Fig. (29):	64-year-old man with alcoholic cirrhosis complicated by multifocal hepatocellular carcinomas	95
Fig. (30):	MR images of a 48-year-old man with chronic hepatitis C cirrhosis	96
Fig. (31):	Hypervascular HCCs, with one lesion seen only during the arterial phase, in a 65-year-old man with cryptogenic cirrhosis	97
Fig. (32):	A 64-year-old woman	98
Fig. (33):	A 59-year-old man with cirrhosis	101
Fig. (34):	54-year-old man with alcoholic cirrhosis	102
Fig. (35):	Transverse MR images in 71-year-old man with biopsy-proved HCC in the background of cirrhosis secondary to hemochromatosis	105
Fig. (36):	A 62-year-old man with hepatocellular carcinoma treated with percutaneous radio-frequency ablation	106
Fig. (37):	65-year-old cirrhotic man after radiofrequency ablation for hepatocellular carcinoma	107

Introduction

Cirrhosis is a diffuse liver disease characterized by progressive paranchymal damage and nodular regeneration. Hepatocellular carcinoma (HCC) is a neoplasm that usually arises in a cirrhotic liver by a multisteps carcinogenesis process (*Brancatelli et al 2007*).

Recent studies have shown that in patient with cirrhosis and early stage HCC, liver transplantation offers the best chance for long-term survival. Therefore, early detection of HCC and accurate assessment of tumour burden are crucial to successful treatment planning and long-term survival (Secil et al 2008).

Ultrasonography is the primary screening test since it allows for a quick and cost-effective way to examine the liver parenchyma and can be done as frequently as needed, typically every 3-6 months (*Nicolau et al 2002*).

However, US based screening for HCC has a suboptimal sensitivity and specificity, especially when liver cirrhosis is present. Hence patients with an abnormal liver US showing cirrhosis or focal mass often undergo a contrast-enhanced CT or MRI examination (*Vogl et al 2002*).

Magnetic resonance imaging (MRI) is extremely useful in the detection and characterization of regenerating and dysplastic nodules and HCC. Several studies have demonstrated the superiority of MRI in both lesions when compared to CT (Semelka et al 2001).

Gadolinium-enhanced MRI with multiple phases of acquisiation improves the detection of HCC. However, the determination of contrast enhancement is not always easy to accomplish for hyperintense lesions on arterial phase dynamic image. Subtraction of unenhanced image from gadolinium-enhanced images has been pursued in an attempt to maximize the qualitative recognition of lesion enhancement (*Yu and Rofsky 2003*).

The use of dynamic subtraction MRI is a simple automatic procedure that is commonly available in most MRI machines and the use of subtraction of dynamic contrast enhanced series is a helpful in detection of HCC and yielded increased sensitivity, specificity and accuracy rates compared to the use of the standard protocol alone (Secil et al 2008).

Magnetic resonance imaging (MRI) has, in recent years, led to significantly better detection of hepatic focal lesions following improvements in technology and techniques (*Arguedas 2003*).

Aim of the Work

The aim of this study is to demonstrate the role of MRI using new technique of dynamic subtraction for early detection and characterization of HCC.

A. Gross Anatomy of the Liver

The liver is the largest gland in the body and has a wide variety of functions (*Snell 2004*).

The liver is soft and pliable and occupies the upper part of abdominal cavity just beneath the diaphragm (*Snell* 2004).

Surfaces of the liver

The diaphragmatic or upper surface

Is smooth, flat posteriorly and has a round upper surface with a large dome for the right hemi-diaphragm and a smaller dome for the left hemi-diaphragm. A depression between these marks the site of the central tendon and the overlying heart. The diaphragmatic surface ends anteriorly in the inferior surface of the liver. The inferior border ascends less obliquely than the costal margin and lies below it as it crosses the midline to meet the costal margin of the left side at approximately the eight costal cartilage (*Ryan 1994*).

In addition to the notch for the gall bladder, the inferior border is marked by notch for ligamentum teres which is the obliterated remnant part of the left umbilical vein, and passes with small paraumbilical veins from the

umbilicus to the inferior border of the liver in the free edge of a crescentric fold of peritoneum called the falciform ligament, this meets the liver just to the right of the midline, this site is used as an anterior marker of the sagittal plane of division of the liver into anatomical right and left lobes (*Fig.1*) (*Ryan 1994*).

The posterior or visceral surface

It is marked by H-shaped arrangement of structures. The crossbar is made by hilum of the liver (porta hepatis). This is the site for entry of right and left hepatic arteries, portal veins and exit for the right and left hepatic ducts and passage of autonomic nerves and lymph vessels. The gall bladder and the inferior vena cava form the right vertical part. These are separated by the caudate process, which connects the caudate lobe with the right lobe of the liver. The left vertical part is formed by ligamentum teres. This is continuous with the fissure for ligamentum venosum (Fig.2) (Ryan 1994).

The visceral surface of the liver is in contact with

- The oesophagus, stomach and lesser omentum on the left side.
- The pancreas and the duodenum in the midline.
- The right kidney, adrenal gland and hepatic flexure of the colon on the right side (*Ryan 1994*).