Epidemiological Study of Tuberculosis Pattern and Management in a Sample of Egyptian Children (Abbassya Chest Hospital)

Thesis

Submitted for fulfillment of PhD. in Medical Childhood Studies

Presented By

Amira Bahour Guirguis

Ms.c. in Pediatrics

Under Supervision

Prof. Magdy Karam El Din Aly

Professor of Preventive Medicine and Epidemiology
The Head of the Medical Department
Institute of Postgraduate Childhood Studies
Ain Shams University

Prof. Samia Samy Aziz

Professor of Preventive Medicine and Epidemiology Institute of Postgraduate Childhood Studies Ain Shams University

Ain Shams University
Institute of Childhood Studies
Medical Department
2010

Acknowledgements

Before all thanks to GOD the most compassionate, the most merciful.

I would like to express my profound gratitude and great respect to Professor Dr. Magdy Karam ElDin, Professor of Preventive Medicine and Epidemiology and The Head of the Medical Department, Institute of Postgraduate Childhood Studies, Ain Shams University. It was an honor for me to carry out this work under his expert supervision. My sincere thanks for his valuable advice and great support.

I am much indebted to Professor Dr. Samia Samy Aziz, Professor of Preventive Medicine and Epidemiology, Institute of Postgraduate Childhood Studies, Ain Shams University, for suggesting the idea of this work, close supervision, her continuous guidance, illuminating help, and kind encouragement. I thank her very much for her expert assistance throughout this work.

I would like to thank all my professors at Institute of Postgraduate Childhood Studies, and all my colleagues in El-Abbassyah Chest Hospital

Lastly, I wish to express my great gratitude to my family for their close support and patience.

CONTENTS

-List Of Abbreviations.		
-List Of Tables.		
- List Of Figures.		
-Introduction and Aim of the Work	1	
-Review of literature		
-History of Tuberculosis	4	
- Etiology of Tuberculosis	5	
-Epidemiology of Tuberculosis	7	
-Transmission and Sources of Infection	12	
- Pathology and Pathogenesis of Tuberculosis	15	
- Diagnosis of Tuberculosis	18	
-Prophylaxis against Tuberculosis	46	
-Treatment of Tuberculosis	51	
-Subjects and Methods	58	
-Results	62	
-Discussion	88	
-Summary& Conclusions		
-Recommendations		
-References	106 107	
Arabic Summary	101	

List of Abbreviations

AFB Acid fast bacilli

AIDS Acquired immuno-deficiency syndrome

ARI Annual risk of infection BCG Bacillus Calmette Guerin

BC Before Christ

CDC Center of disease control
CSF Cerebro spinal fluid
DM Diabetes mellitus

DNA Deoxyribo nucleic acid

DOTS Direct observed therapy of short duration

EIA Enzyme immuno-assay

ELISA Enzyme linked immunosorbent assay

ESR Erythrocyte Sedimentation rate

E Ethambutol

HIV Human immunodeficiency virus HLA Histocompatibility leucocytic antigen

H or INH Isoniazid

IUATLD International Union Against Tuberculosis and Lung

Diseases

MDR Multiple drug resistance

MGIT Mycobacteria growth indicator tube

MRI Magnetic Resonance Imaging
MoH&P Ministry of Health and Population

MOTT Mycobacteria other than tubercle bacilli

MTB Mycobacterium tuberculosis

NTCP National Tuberculosis Control Program

NTM Non-tuberculous mycobacteria NTP National Tuberculosis Program

OT Old tuberculin

PAS Para-aminosalicylic acid PCR Polymerase chain reaction

PPTB Positive pulmonary tuberculosis

PPD Purified protein derivative

RBC Red Blood Cell RIF or R Rifampicin

SD Standard Deviation

S Streptomycin
T Thiacetazone
TB Tuberculosis
TU Tuberculin unit

UK United Kingdom

U/S Ultra-sound

US United States of America

WBC White Blood Cell

WHO World Health Organization

Z Pyrazinamide ZN Ziehl – Neelsen

LIST OF TABLES

Table 1	Population groups at high risk for acquiring tuberculosis infection and factors that increases the risk of progress from latent tuberculosis infection to tuberculosis disease.	10
Table 2	Systemic and Pulmonary manifestations of active TB	19
Table 3	Clinical manifestations and pathology of extra pulmonary TB	21
Table 4	Hematological changes and their mechanisms in tuberculosis	24
Table 5	A score chart adopted from Crafton et al., 1994 and commented upon in a study done by Rheenen, 2002.	45
Table 6	A score system adopted by the Ministry of Health Brazil in the diagnosis of pulmonary tuberculosis in childhood.	46
Table 7	Secondary chemoprophylaxis	50
Table 8	The most commonly used anti-tuberculous drugs	52
Table 9	Drugs for treatment of MDR-TB in children.	53
Table10	Common adverse reactions and recommended monitoring of antituberculous medications.	54
Table11	Distribution of Pediatric Tuberculosis cases among total chest cases within the five years of the study	62
Table12	Distribution of Pediatric Tuberculosis cases among total Tuberculous cases within the five years of the study.	63
Table13	Distribution of age groups among all the cases within the five years.	64
Table14	Gender Distribution among all cases within the five years of the study	65
Table15	The frequent distribution of cases according to age grouping and gender.	66
Table16	Percentage of gender distribution in each age group	66
Table17	The distribution of Weight for age Percentiles in the studied cases.	67
Table18	The frequent Distribution of cases according to residence.	67

Table19	The frequency of a definite tuberculous contact history among the cases within the five years of the study.	68
Table20	Distribution of definite contact history within age group among all cases .	68
Table21	The frequent distribution of the main presenting symptom in relation to definite contact history among all the cases.	69
Table22	Percentage of definite contact history in relation with BCG scar.	70
Table23	The frequent distribution of clinical varieties in relation to definite contact history	70
Table24	The frequent distribution of the site of the lesion In relation to definite contact history.	71
Table25	Percentage of BCG vaccination among all cases.	71
Table26	The frequency of cases according to the presence of BCG scar among the five years.	72
Table27	The frequency of cases according to the Presence of BCG scar in age groups.	73
Table28	The frequent distribution of the site of the lesion among all cases.	74
Table29	The frequent distribution of the site of the lesion among the age groups.	74
Table30	The frequent distribution of the site of the lesion as regard gender.	75
Table31	The frequent distribution of the site of the lesion according to the Presence of BCG scar	75
Table32	The frequent distribution of the main presenting symptom among all the cases .	76
Table33	The frequent distribution of the main presenting symptom in relation to gender among all the cases .	76
Table34	The frequent distribution of the main presenting symptom in relation to age groups among all the cases.	77
Table35	The frequent distribution of the main presenting symptom in relation to presence of BCG scar among all the cases .	77
Table36	The frequent distribution of the clinical varieties among all cases.	78
Table37	The frequent distribution of clinical varieties in relation to gender in all cases .	79

Table38	The frequent distribution of clinical varieties	79
	during the studied years.	
Table39	The frequent distribution of clinical varieties	80
	in relation to age groups among all the studied	
	cases.	
Table 40	The frequent distribution of clinical varieties	81
	in relation to BCG vaccination.	
Table41	Percentage of cases according to detection of	82
	AFB by direct smear in sputum.	
Table42	Percentage of cases according to detection of	82
	AFB by direct smear in sputum in relation to	
	vaccination with BCG vaccine.	
Table43	Percentage of cases according to detection of	83
	AFB by direct smear in sputum in relation to	
Table44	definite contact history.	83
1 able44	Percentage of cases according to detection of AFB by direct smear in sputum in relation to	83
	site of lesion.	
Table45	The frequent distribution of cases according	84
	to Tuberculin test reaction.	
Table46	The frequent distribution of chest x- ray	84
	findings among the studied cases.	
Table 47	The frequent distribution of chest x- ray	85
	findings in relation to the lesion site among	
	the studied cases.	
Table 48	The frequent distribution of chest x- ray	85
	findings in relation to definite contact history	
	among the studied cases.	
Table 49	Percentage of cases according to estimation	86
	of Hb level in the studied cases.	
Table 50	Percentage of cases according to estimation	86
	of ESR level in the studied cases.	
Table 51	Percentage of cases according to estimation	86
	of White Blood cell level in the studied cases	
Table 52	Percentage of cases according to estimation	87
Toble 52	of Lymphocytic count in the studied cases	07
Table 53	Relation between BCG vaccination and the WBC and Lymphocytic count in the studied	87
	cases	

LIST OF FIGURES

Fig.1	The outcome of primary infection.	21
Fig.2	Distribution of Pediatric Tuberculosis cases among	63
	total chest cases within the five years of the study	
Fig.3	The percentage distribution according to age group	64
Fig.4	Distribution of gender among the five years of the study	65
Fig.5	Distribution of age groups among all the cases	66
Fig.6	Distribution Percentage of definite contact history among age groups	69
Fig.7	The frequency of cases according to the Presence of BCG scar	72
Fig.8	The frequency of cases according to the Presence of BCG scar among the five years.	73

Introduction and Aim of the Work

Tuberculosis is a major, cause of morbidity disability and mortality throughout the world. Tuberculosis killed 2.5 million people in the world in 1990 and 98% of them were in the developing countries (Raviglione et al., 1995). Pulmonary Tuberculosis (PTB) remains one of the most important health problems in the world with an estimated 8 millions new cases of pulmonary tuberculosis and 1.9 million deaths having occurred in 1997 (Conde et al. 2000).

Frequent data from WHO show a world-wide increase in the number of yearly reported cases (WHO, 1994). WHO estimates more than 8 million new cases of tuberculosis occur and approximately 3 million people die of the disease worldwide each year. Almost 1.3 million cases and 450,000 deaths occur in children each year. If the present trend continue, 10.5 million new cases are expected to occur annually by 2005 with Africa having more cases than any other region in the world. (Munoz and Starke, 2004). The recurring spread of tuberculosis epidemic in recent years was associated with the spread of AIDS which weakens the body's immunity (Tag El-Din, 2002).

As a member of the Eastern Mediterranean Region of the WHO, Egypt is considered as a member country with moderate prevalence of tuberculosis with estimated incidence 25-29 per 100,000 population (WHO, 2001) and the report from Egyptian National TB Program revealed that the annual risk of TB infection is 0.32% and that the incidence of smear positive cases is 16 per 100,000 population (ElMoghazy, 1997). The total number of TB cases reported in 1999 was 11763 and the number of new smear positive cases was 5095 (WHO, 2001). The case fatality rate for TB was 50% for untreated patients before the advance of antibiotic therapy. Deaths worldwide are estimated at 3 million per year. Mortality of untreated congenital TB is 50% (Lobata et al., 2000&ATS/CDC, 2003).

The social stigma attached to tuberculosis may be linked to the long term debilitation and discomfort it produces in contrast to other short term infectious diseases and yet the threat it poses to the economic stability and health of the entire family particularly when the bread winner is affected (Brieger and Carl, 1992).

Studies show that traditional factors associated with tuberculosis such as poverty, homeless, malnutrition, overcrowding, drug and alcohol abuse are also contributing to the increase of tuberculosis (Zolopa et al., 1994). Infection in children is typically due to prolonged close contact with an individual having untreated, active, cavitary, sputum-positive disease (Prince, 1998).

Children can be a real threat since primary infection can progress quickly to active disease and serious complications as miliary tuberculosis and meningitis may occur (Tuberculosis Control Guide, 1999). The American Academy of Pediatrics reported an increase in tuberculosis infection by 34% among children aged 5-14 years and 36% among those younger than 5 years old (Butlaro and Ezell, 1995). Fifty percent of 0-14 years old, house-hold contacts of smear positive cases became tuberculin positive, but only 5% converted when contact case was culture positive but smear negative (Styblo, 1980).

Patients at risk of infection with resistant strains were those who failed to complete a prescribed course of therapy or were otherwise non-compliant (Bass et al., 1990).

There are five clinical thought to be the most relevant as predictors of the disease in children: history of contact with a case of tuberculosis, positive skin test, persistent cough, low weight for age and unexplained or prolonged fever (Fourie et al., 1998).

The only available vaccine against tuberculosis is Bacille Calmette – Guerin (BCG), named for the two French investigators responsible for its development. The route of administration and dosing schedule for BCG vaccine are important variables for its efficacy. The preferred route of administration is intradermal injection with a syringe and needle because it is the only method that permits accurate measurement of an individual dose (Fisherman, 2002&Munoz and Starke, 2004).

Aim of the Study

- 1-To assess a general knowledge and to study the epidemiology of tuberculosis among a sample of Egyptian children admitted in Abbassya Chest Hospital throughout 5 years.
- 2- To study the distribution of tuberculosis as regard various aspects: age, sex, resident, BCG vaccine scar, presenting symptoms, contact history, tuberculin test, laboratory and bacteriological finding.
- 3-To study the clinical picture of tuberculosis in children, to report any recent changes in its symptoms and signs and to detect any complications.
- 4-To study the laboratory and radiological findings of tuberculosis in Egyptian children and to report any significant changes.

History of Tuberculosis

Tuberculosis is an ancient disease

The earliest records that are consistent with tuberculosis are the Egyptian wall paintings that depict typical hunchback deformities and correlate with findings of spinal TB in mummies (Morse et al., 1964&Fisherman, 2002). In addition, the recent finding of acid and alcohol fast bacilli in human remains coming from human skeleton in Heidelberg, Germany, dating back to 5000 B.C (Sager et al., 1972), similar proof has been obtained from Egyptian mummies from around 3500 B.C (Zimmerman,1979). Other example of prehistoric tuberculosis includes a mummy from 1000 B.C revealed not only Pott's disease of the spine but also a psoas abscess (Morse, 1961). Furthermore, there is evidence that a large sanatorium for treating victims of tuberculosis existed in Egypt about 1000 B.C (Dubos, 1982).

The first written description of TB is from India 700 B.C. In first writing it was called consumption because its tendency to produce great wasting in its victim. In the nineteenth century it was known as the white plague and eventually the name acquired with the discovery of the tubercle bacillus by Robert Koch in 1882(Baum and Wolinsky, 1983&Fisherman, 2002).

An affliction of man kind from the dawn of civilization, tuberculosis is accurately described (fever, cough coupled with expectoration of blood and sputum and generalized wasting suggestive of pulmonary tuberculosis), in the earliest writing of Chinese and Roman physicians (Keers, 1981). Greek literature contains numerous references to conditions resembling consumption (tuberculosis) including Hippocrates, who lived between 460-377 B.C., probably introduced the term phthisis, the old name of tuberculosis (Meachen, 1978), Aristotle (384-322 B.C.) who recognized the contagious nature of the disease and Plato (430-347 B.C) who recommended no treatment because caring for chronic tuberculotic patients was of no advantage to the patient (Evans, 1998).

In Northern Europe, Britain, France and Germany, the notion existed that tuberculosis was indeed hereditary, that one inherited the tuberculous diathesis bacilli. Robert koch in 1882, described tubercle bacilli using aniline dyes and oil immersion microscope and was able to identify tubercle bacilli in every lesion in the human or animal victim and was able to culture the bacillus outside the body. Furthermore, he inoculated the bacillus into an experimental animal that developed tuberculosis. Henceforth, searching for the bacillus in sputum of suspected cases quickly became standard clinical practice (Sakula, 1982).

Finally, in 1896 Roentgen (1845-1923) announced the discovery of x- ray and was quickly applied to the disorder of chest and tuberculosis in particular (Evans, 1998).

Etiology of Tuberculosis

The genus *Mycobacterium* "fungus like bacterium" was first described by Lehmann and Neurmann, and includes *Mycobacterium leprae* and *Mycobacterium tuberculosis* (Evans, 1998). It is one of the most widely distributed bacterial genera in nature. Since Koch's description of the human tubercle bacills in 1882, many other species of Mycobacterium have been isolated and characterized (Songer, 1981).

Currently, there are 71 recognized species in the genus *Mycobacterium*. These species produce a spectrum of infections in humans and animals (Forbes et al., 1998).

There are five closely related mycobactria in the Mycobactrium tuberculosis complex: M. tuberculosi, M. bovis, M. africanum, M. microti, and M. canneti. All belong to the order of Actinomycetales and the family of Mycobacteriacae. M. tuberculosis is the most important cause of tuberculosis disease in humans (Munoz and Starke, 2004).

The tubercle bscilli are non- spore forming, non motile, pleomorphic, weakly gram-positive curved rods 2-4umlong. They may appear beaded or clumped in stained clinical specimens or culture media. They are obligate aerobes that grow in synthetic media containing glycerol as the carbon source (e.g. Loewenstein Jensen culture media). These mycobacteria grow best at 37-41°c, produce niacin, and lack pigmentation. A lipid- rich cell wall accounts for resistance to the bactericidal actions of antibody and complement. A hallmark of all mycobacteria is acidfastness .Once stained they resist decoloration with ethanol and hydrochloric or other acids (Starke, 2001).

Atypical mycobacteria: The term Non Tuberculous Mycobacteria (NTM) includes all other mycobacterial species that do not belong to the (typical) M.tuberculosis and M. bovis complex. This large group has been known by several names; Atypical, Environmental, Opportunistic, Mycobacteria other than tubercle baclli (MOTT), unclassified, or Anonymous (Debrunner et al., 1992). This group can cause disease which may be clinically, radiologically and histopathologically indistinguishable from tuberculosis. The disease associated with them has been termed pseudo-tuberculosis or Mycobacteriosis (Hanaks, 1968).

The main difference between (MOTT) and *M.Tuberculosis* is that MOTT is ubiquitous environmental organisms and not transmitted from person to person (Kuyp, 1997). NTM are present everywhere in the environment and sometimes colonize in healthy individuals in the skin, respiratory and gastrointestinal tract (Portaels, 1995).

In Egypt, Hussien et al. in 2000 stated that 87% of all isolated strains were *M. tuberculosis*, and 13% were atypical strains: 6.5% *M. avium*-intracellular, 4.5% *M. Kansas* and 2.2% *M. chelonei*. El Gazar et al. in 1998 found that 12.7% of isolates were atypical strains; 8.5% *M. avium*-intracellulare; 4.2% *M. chelonei*. Gamal El Din in 1997, found atypical strains in 14% of the isolates. Lower results were obtained by Othman in 1993, in Sharkia governorate who found atypical strains in 7.7%.