Genetics of Migraine

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By

Reham Yousif Eiz El Deen M.B.B.CH Sohag University

Supervised By

Prof. Dr. Samia Ashour Mohammad

Head of Neurology Department and Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Prof. Dr. Nagia Aly Fahmy

Professor of Neuropsychiatry Faculty of Medicine -Ain Shams University

Prof.Dr.Lobna Mohammad El-Nabil El-Sayed Assistant Professor of Neuropsychiatry Faculty of Medicine -Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Genetics of Migraine

By

Reham Yousif Eiz El Deen

Abstract

Migraine is one of the most common neurovascular disorders, characterized by recurrent attacks of disabling headache that lasts from a few hours to a few days. Usually, migraine patients are perfectly well in between attacks.

Migraine affects about 15% of people in developed countries and three times more common in women than in men.

The pathophysiology of migraine involves both neural and vascular mechanisms, but it's not completely known why and how migraine attacks are initiated.

Genetic factors play an important role in physiological processes by lowering threshold for migraine attacks. Genetic research in the field of migraine has mainly focused on identification of genes involved in familial hemiplegic migraine, a rare monogenic subtype of migraine with aura. Familial hemiplegic migraine is considered a valid model to study molecular mechanisms involved in the common forms of migraine.

Recently it has been found that calcitonin gene related peptides (CGRPs) play a role in the pathogenesis of the pain associated with migraine. CGRP receptor antagonists are being investigated both in vitro and clinical studies for the treatment of migraine.

Conventional treatment focuses on three areas: trigger avoidance, symptomatic control and prophylactic pharmacological drugs. Patients who experience migraines often find that the recommended migraine treatments are not 100% effective at preventing migraines, and sometimes not be effective at all. Pharmocological treatment is considered effective if they reduce the frequency or severity of migraine attacks by 50%.

Keywords: migraine, genetics, evilexy, strock

Acknowledgment

First of all, I wish to express my sincere thanks to Allah for his care and generosity throughout of my life.

I appreciate the great effort of **Prof. Dr. Samia**Ashour Mohamed, Professor of Neuropsychiatry, Faculty of Medicine Ain Shams University, who helped me by her precious opinions and contributive comments that served much in the construction of this work

I would like her to express my deep great thanks to **Prof. Dr. Nagia Aly Fahmy,** Professor of Neuropsychiatry, Faculty of Medicine Ain Shams University, for her tremendous effort she has done in the meticulous revision of this work.

I wish to express my profound gratitude and sincere appreciation to **Dr. Lobna Mohammed El-Nabil El-Sayed**, Lecturer of Neuropsychiatry, Faculty of Medicine Ain Shams University, for her instructive guidance, valuable suggestions, criticism and supervision, as well as her kindness, continuous encouragement and kind help made this work come to light.

At last, I am indebted to my family for their great support, patience, and continuous encouragement.

Reham Yousif Eiz El-Deen

List of Contents

	Page
List of abbreviations	II
List of tables	IV
List of figures	V
Chapter I: Introduction and aim of work	1
Chapter II: Pathophysiology and types of migraine	6
Chapter III: Genetics of migraine	22
Chapter IV: Genetic relation of migraine and other neurological diseases	40
Chapter V: Management of migraine	55
Discussion	78
Summary and Conclusion	86
Recommendations	88
References	
Arabic summary	

List of Abbreviations

ACA : Anterior cerebral arteries

ACE-DD : Angiotensin converting enzyme deletion

polymorphism

AGS : Aicardi-Goutie res syndrome

ATPIA2 : The α 2-subunit of voltage gated sodium-

potassium pumps

BRV : Benign recurrent vertigo

CACNAIA: The pore-forming α1-subunit of voltage-gated

neuron (P/Q type) calcium channels

CADASIL: Cerebral autosomal dominant arteriopathy

with subcortical infarcts and

leucoencphalopathy

CDH : Chronic daily headache

CGRPs : Calcitonin gene related peptides

CHORD : Canadian headache outpatient registry and

database

CI : Confidence interval

CSD : Cortical spreading depression CWM : Canadian women and migraine

DZ : Dizygotic twins

EA1 : Episodic ataxia type 1
EA2 : Episodic ataxia type 2
ESR : Estrogens receptor

FCL : Familial chilblain lupus

GEFSs : Generalized epilepsy with febrile seizures

ICHDs : International classification of headache

disorders

IHS : International headache society classification

MA : Migraine with aura
MAV : Migranous vertigo
MO : Migraine without aura

MOH : Medication overuse headache

MTHFR : Methylenetetrahydrofolate reductase

MZ : Monozygotic twins

List of Abbreviations (Cont.)

NO : Nitric oxide

NsAIDs : Non steroidal anti-inflammatory drugs

OA : Ophthalmic artery

OMIM : Online Mendelian Inheritance in Men

Database

OR : Odds ratio

PGR : Progesterone receptor

RVCL : Retinal vasculopathy with cerebral

leukodystrophy

SCNIA : The pore-forming α 1-subunit of voltage gated

Na_v 1.1 sodium channel

SHM : Sporadic hemiplegic migraine

SME1 : Severe myclonic epilepsy of infancySNP : Single nucleotide polymorphism

SUNCT : Short lasting unilateral neurolgiform headache

attacks with conjunctival injection and treating

TGVS : Trigeminovascular system
TNC : Trigeminal nucleus caudalis

TREX1 : A new migraine – associated gene

WMLs : White matter lesions

PAMP1 : The modifying protein necessary to bind CRP

to its receptor.

List of Tables

Table	Title	Page
(1)	Common prevocational triggers for migraine	13
(2)	Classification of chronic daily headache	56
(3)	Chronic migraine (modified criteria of the	57
	ICHD-113)	
(4)	Specific migraine drugs used for symptomatic	64
	therapy: commonly used formulations only	
(5)	Commonly used drugs for migraine	67
	prophylaxis	
(6)	Patient self-management-patients can become	71
	more involved in actively managing their	
	migraine if they learn and apply the following	
	skills	
(7)	Medication types overused by patients with	72
	migraine referred to headache specialists in	
	Canada	
(8)	Management principles for migraine patients	73
	with medication overuse headache	

List of Figures

Figure	Title	Page
(1)	Show the vascular supply of the brain	7
(2)	Some of the chromosomal susceptibility loci for common forms of migraine	24
(3)	Functional roles of the proteins coded by known FHM genes within a glutamateric synapse	27

Introduction Chapter I

Introduction

Migraine is one of the most common neurovascular disorders, characterized by recurrent attacks of disabling headache that lasts from a few hours to a few days. Usually, migraine patients are perfectly well in between attacks (Norberg, 2006).

Migraine is identified by the world health organization as among the 20 leading causes of world wide disability on individuals and on society. The most recent 10 years of studies show extremely variable migraine prevalence in the general population ranging from 5% to 19%. However, those studies, whether from high or low prevalence countries, all provide consistent evidence that migraine is far more common in women than men. One year prevalence rate in females ranging from 6.9-25% are also greater than those of males at 2.3-13%, while lifetime prevalence is approximately 7 -33% in women and 2.6-14.8% in men (Wang et al., 2008).

Migraine affects about 15% of people in developed countries and three times more common in women than in men (Wessman et al., 2007).

Migraine is classified according to the international headache society into various types: Migraine without aura, Migraine with aura, Childhood periodic syndromes that are migraine (Cyclic precursors of abdominal migraine, benign paroxysmal vertigo of childhood). It includes also retinal migraine and complications of migraine (chronic migraine, status migrainosus, persistent aura without infarction, migrainous infarction, migraine- triggered seizure). In addition to probable migraine (probable migraine without aura, probable migraine with aura, probable chronic migraine) (Evans and Randolph, 2005)

1

Chapter I Introduction

The pathophysiology of migraine involves both neural and vascular mechanisms, but it's not completely known why and how migraine attacks are initiated. Activation of the sensory trigeminovascular system is thought to be responsible for the pain of migraine, whereas cortical spreading depression (CSD) seems to underlie the visual aura symptoms. CSD is characterized by a wave of intense neuronal activity that slowly spreads across the brain cortex and this followed by along-lasting neuronal inhibition (*Pietrobon and Stressing*, 2003).

Animal models of migraine pathogenesis have suggested that CSD triggers activation of the nociceptive trigeminovascular system, which leads to release of various factors, such as the calcitonin gene- related peptide (CGRP), substance P, neurokinin A, and nitric oxide (No). These molecules subsequently cause vasodilatation and neurogenic inflammation of the pain- sensitive meningeal blood vessels, these generating a headache. Furthermore, the depolarization phase of CSD has been associated with an increase in cerebral blood flow (*Norberg*, 2006).

Genetic factors play an important role in physiological processes by lowering threshold for migraine attacks. Genetic research in the field of migraine has mainly focused on identification of genes involved in familial hemiplegic migraine, a rare monogenic subtype of migraine with aura. Familial hemiplegic migraine is considered a valid model to study molecular mechanisms involved in the common forms of migraine (*Ferrari and Goadsby*, 2006).

Three genes for familial hemiplegic migraine have been identified: CACNA1A (FHM₁) encoding the pore-forming α 1-subunit of voltage-gated neurons (P/Q type) calcium channels (*Ophoff et al.*, 1996), ATP1A2 (FHM₂) encoding the α 2-subunit of glial cell sodium-potassium pumps (*De Fuscs et al.*, 2003) and SCN1A (FHM₃) encoding the pore forming α 1-

Chapter I Introduction

Subunit of voltage-gated Na_v1.1 sodium channels (*Dichgans et al.*, 2005). With the identification of these genes, the concept that FHM and like common types of migraine, are ionopathies, that is, disorders of disturbed ion transport has increasing acceptance (*Ferrari and Goadsby*, 2006).

Mutations of FHM1, affect the function of Ca_v2.1 calcium channels (*Pietrobon and Striessnig*, 2003), FHM2 mutations in the ATP1A2 gene affect the Na⁺ K⁺ pumps that are primarily expressed in glial cells (*De fuscs et al.*, 2003), FHM3 mutations in the SCN1A gene cause a more rapid recovery from fast inactivation of negative sodium channels after depolarization (*Dichgans et al.*, 2005).

Based on cellular studies, it can be hypothesized that increased susceptibility to FHM and common forms of migraine may arise from disturbed ionic balance and concomitantly increased release of neurotransmitter glutamate (Moskowitz et al., 2004).

There are some mutant mouse models that may be useful for investigation of the mechanisms of migraine. The main advantage of knock- in mouse models carrying human mutations is that they express the mutant gene in its most natural environment, the FHM1, R192Q mutation, previously identified in patients with pure FHM introduced into the endogenous CACNA1A mouse gene (*Van den Maagdinberg et al., 2004*). Electrophysiological measurements of cerebellar granule cells isolated from R192Q FHM1 mice show increased neuronal calcium current, also on a whole cell level (*Kaja et al., 2005*).

Knock- in FHM2 and FHM3 mouse models are not yet available, but will be of great interest to knock-out mice that

completely lack the Na+, K+ pumps that have been generated, but appear to be less homozygous animals die at birth due to respiratory problems (*Ferrai and Goadsby*, 2006).

Chapter I Introduction

The observation that in these mice- whole brain γ -aminobutyric acid and glutamate levels are increased under scores, the in vivo importance of the FHM2 gene in the regulation of neurotransmitter homeostasis (*Rob et al.*, 2007).

Positive diagnosis of migraine requires a good history of the disorder including family history, accompanying symptoms and triggers (*Randolph and Evans*, 2005).

Identification of susceptibility genes for a disease can be done in two main ways. Commonly, a genome-wide scan of the entire genome is performed in related individuals and then a chromosol disease region is located through linkage analysis. Alternatively, if the pathophysiology of the disease is fairly well understood, genes can be selected and tested for association with disease phenotype based on their function. This is usually performed by a case- control association study (*Norberg*, 2006).

Conventional treatment focuses on three areas: trigger avoidance, symptomatic control and prophylactic pharmacological drugs. Patients who experience migraines often find that the recommended migraine treatments are not 100% effective at preventing migraines, and sometimes not be effective at all. Pharmocological treatment is considered effective if they reduce the frequency or severity of migraine attacks by 50% (*Kaniecki and Lucas*, 2004).

Recently it has been found that calcitonin gene related peptides (CGRPs) play a role in the pathogenesis of the pain associated with migraine. CGRP receptor antagonists are being investigated both in vitro and clinical studies for the treatment of migraine (*Tepper and Stillman*, 2008).

Introduction ${\it Chapter}\, I$

Aim of the work

To highlight the recent updates of the genetics of migraine and stress their implications in the management of migraine.

5

Pathophysiology and types of migraine

Anatomical consideration

Vascular supply of the brain

The brain is perfused by the carotid and vertebral arteries, which begin as extracranial arteries leading from the aorta or other great vessels and course through the neck and base of the skull to reach the intracranial cavity. The carotid and its branches are reffered to as the anterior circulation and the vertebrobasilar as the posterior circulation. The internal carotid arteries enter the cranium through the carotid canal. The four main segments of the internal carotid artery are

cervical, petrous, cavernous and supraclinoid. The internal carotid artery ends by dividing into the middle and anterior cerebral arteries (ACA), after giving ophthalmic (OA), superior hypophyscal posterior communicating, and anterior choroidal arteries (as shown in figure 1). The vertebral artery usually arise from the subclavian artery. The basilar artery originates as the merger of the right and left vertebral arteries, usually at the pontomedullary junction. The basilar artery usually terminates into the right and left posterior cerebral arteries (*Rowland*, 2005).

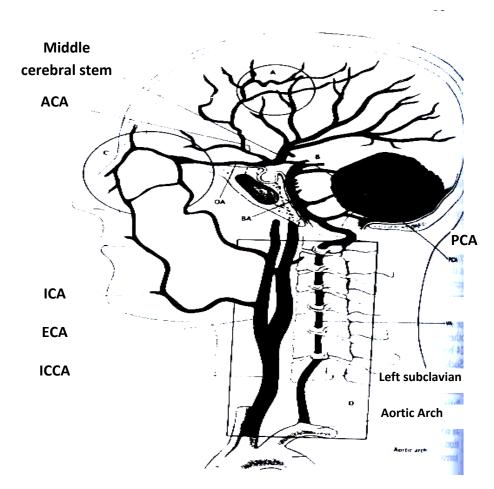


Figure (1): Show the vascular supply of the brain (Rowland, 2005)

Pathophysiology of Migraine

Genetics of migraine

Genetic epidemiology has shown that risk to first-degree relative of probands with migraine with aura is four fold, whereas in migraine without aura, is 1.9 fold. Clearly indicating that genetic influence is stronger in migraine with