Assessment of Resting Energy Expenditure (REE) in Mechanically Ventilated Patients

Thesis
Submitted for partial fulfillment of the Master degree in
Chest Diseases

By

Rania Othman Ibrahim Ibrahim *M.B., B.Ch*

Under Supervision Of

Prof. Samiha Sayed Ahmad Ashmawi

Professor of Chest Diseases

Faculty of medicine – Ain Shams University

Dr. Nermine Mounir Riad Abd El Azim

Lecturer of Chest Diseases

Faculty of medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2011

تقييم الطاقة المستهلكة أثناء الراحة في مرضى التنفس الصناعي

رسالة توطئة للحصول على درجة الماجستير في الأمراض الصدرية مقدمة من

الطبيبة / رانيا عثمان ابراهيم ابراهيم بكالوريوس الطب والجراحة جامعة عين شمس

تحت إشراف أيد/ سميحة سبد أحمد عشماوى أستاذ الأمراض الصدرية كلية الطب جامعة عين شمس

د/ نرمين منير رياض عبد العظيم مدرس الأمراض الصدرية كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس

Summary and Conclusion

Summary:

Metabolism is acutely modified by any form of severe disease. Resting energy expenditure is also influenced by malnutrition.

Malnutrition may be linked to higher morbidity and mortality rates and increased length of stay. Thus, caloric requirements & specific metabolism are essential components of the care of these patients.

So accurate determination of REE is necessary in ICU patient who are receiving nutritional support to ensure that their needs are met and to avoid complication of under or over feeding.

Vmax Encore Apparatus (indirect calorimetry) is still the gold standard method to obtain accurate, valid and reliable evaluation (measurement) of REE in both normal and overweight critically ill patients and to determine nutritional support in those patients, in comparison of H-B equation.

Despite that, Indirect calorimetry require metabolic, heamodynamic stability to obtain accurate measurement, trained personnel to perform it and time consuming, in addition; it's expensive specialized equipement that is not universally available.

List of Contents

Title	Page
Introduction	1
Aim of the Work	3
Review of Literature	4
- Energy and Nutrition.	4
- Mechanical Ventilation (MV).	125
Patients and Methods	
Results	173
Discussion	190
Summary and Conclusion	198
Recommendations	
References	203
Arabic summary	

List of Abbreviations

2,3-DPG	2,3-diphosphoglycerate
ABG	Arterial blood gases
ADH	Antidiuretic hormones
AGA	American Gastroenterological Association
ANP	Atrial natriuretic peptide
ARDS	Adult respiratory distress syndrome
ASPEN	American Society for Parenteral and Enteral
	Nutrition
AT	Activity thermogenesis
ATP	Adenosine triphosphate
ATS	American Thoracic Society
BEE	Basel energy expenditure
BIA	Bioelectrical impedance analysis
BMI	Body mass index
BMR	Basal metabolic rate
C.B.C	Complete blood count
CA	Catecholamines
CF	Cystic fibrosis
СНО	Carbohydrates
CO	Cardiac output
CO2	Carbon dioxide
COPD	Chronic obstructive pulmonary disease
CPAP	Continuous positive airway pressure
CPIC	Clinical Pulmonary Infection Score

CR	Caloric restriction
CROP	Compliance, rate, oxygenation and maximal
	pressure integrated index
CVA	Central venous alimentation
CVP	Central venous pressure
DCH	Delayed cutaneous hypersensitivity
DEXA(DXA)	Dual x-ray absorptiometry
DIT	Diet-induced thermogenesis
DLW	Doubly-labeled water
DRIS	Dietary reference intakes
DVT	Deep venous thrombosis
EEA	Energy expenditure of activity
EEPA	Energy expended in physical activity
EER	Estimated energy requirement
EFA	Essential fatty acid
EN	Enteral nutrition
EPOC	Excess post exercise oxygen consumption
ESR	Erythrocyte sedimentation rate
FAO	Food and agriculture organization
FFM	Fat free mass
Fio2	Fraction of oxygen in inspired gas
FRC	Functional residual capacity
Ft	Feet
GIT	Gastrointestinal tract
GSK	Glasgow coma scale
HA	Hyper alimentation

Hb	Haemoglobin
Н-В	Harris Benedict
HCO3	Bicarbonate
HIV/AIDS	Human immune deficiency virus
HR	Heart rate
Ib	Pound
IBW	Ideal body weight
ICP	Increased Intracranial pressure
ICU	Intensive care unit
Ins	inches
J	Joule
K	Potassium
K Pa	kilopascal
Kcal	Kilocalorie
KJ	Kilo joule
mEq	Milliequivalents
MIP	Maximal inspiratory airway pressure
MV	Mechanical ventilation
Na	Sodium
NEAT	Non exercise activity thermogenesis
NO	Nitric oxide
NPPV	Non invasive positive pressure ventilation
PaCO2	Partial pressure of carbon dioxide in blood
PaO2	Partial pressure of oxygen in blood
PCO2	Partial pressure of carbon dioxide
PEEP	Positive end expiratory pressure
PEG	Percutaneous endoscopic gastrostomy

PH	Power of hydrogen
PIP	Peak inspiratory pressure
PMR	Resting metabolic rate
PPD	Purified protein derivative
PS	Pressure support
PSL	Pascal
PT	Prothrombin time
PTT	Partial thromboplastin time
PVA	Peripheral venous alimentation
QOL	Quality of life
RDA	Recommended dietary allowance
REE	Resting energy expenditure
REI	Recommended energy intake
RICU	Respiratory Intensive Care Unit
RMR	Resting metabolic rate
RQ	Respiratory quotient
RR	Respiratory rate
RSBI	Rapid shallow breathing index
RVR	Respiratory rate / tidal volume ratio
SaO2	Arterial oxygen saturation
SDA	Specific dynamic action
SEF	Specific effect of food
SFA	Skin fold anthropometry
SGA	Subjective global assessment
SKSD	Streptokinase streptodornase
SPSS	Statistical Package of Social Science

Mixed venous oxygen saturation
Total body water
Thermic effect of activity
Total energy expenditure
Thermic effect of food
Triglycerides
Total leucocytic count
Total parenteral nutrition
Thyroid stimulating hormones
United states
Urine urea nitrogen
Alveolar volume
Volume assist/control
Ventilator associated pneumonia
Vital capacity
Carbon dioxide production
Minute ventilation
Oxygen consumption
Volume synchronized intermittent mandatory
ventilation
Tidal volume
Weight
White blood cell
World health organization
Work of breathing

List of Figures

Fig. No.	Title	Page No.	
In Re	eview of Literature:		
1	Energy value of food.	38	
2A	A: Body surface area of children	50	
2B	Body surface area of Adult	51	
3	The feeding quadrangle. PVA = peripheral venous alimentation, CVA= central venous alimentation.	68	
4	Small-bore feeding tubes used in enteral nutrition support.	76	
5	Vmax Encore apparatus.	160	
6	Ventilator test: Necessary Supplies and adaptors.	168	
7	Vmax Series Breathing Valve and Autobox Breathing Valve with Mass Flow Sensor Connections.	169	
In Re	In Results:		
1	Distribution of the studied cases as regard gender.	173	
2	Distribution of the studied cases as regard smoking habit.	174	
3	Distribution of the studied cases as regard calculated REE, predicted BMR and measured REE.	189	

List of Tables

Table No.	Title	Page No.
In Rev	iew of Literature:	
1	Calculating tissue losses during weight loss.	34
2	Examples of equations for predicting resting and basal energy expenditure.	40
3	Basal metabolic rates according to weight and sex.	42
4	The equations to be used are as follows in.	44
5	Standard basal metabolic rates based on body surface area for age and sex.	52
6	Estimate of Energy Requirements for Patients Based on Body Mass Index.	56
7	Estimation of Resting Energy Expenditure in Hospitalized Patients.	57
8	Caloric content of common foods.	60
9	Effects of Disease States and Physiological Conditions On Energy Requirements: Results from Doubly-Labeled Water Studies.	67
10	Calorie goals in refeeding the hypometabolic-starved patient.	69
11	Selective approaches to nutritional support.	69
12	Estimate of Recommended Daily Protein Intake.	73
13	Use of Nutrition Support in Catabolic Conditions.	98

14	Clinical Characteristics of Overfeeding Syndromes.	100
15	Clinical characteristics of the refeeding syndrome.	101
In Resi	ults:	
1	Gender distribution among the study group.	173
2	Smoking habit distribution among the study group.	174
3	Liver and renal functions distribution among the study group.	175
4	Type of ventilation among the study group.	175
5	Demographic data among the study group.	176
6	REE by Harris Benedict (H-B) Equation and Metabolic test results by Vmax Encore apparatus among the study group.	177
7	Correlation between calculated REE by Harris-Benedict (H-B) equation and demographic data among the study group.	178
8	Correlation between measured REE by Vmax Encore apparatus and demographic data among the study group.	179
9	Correlation between VO2 and demographic data among the study group.	180
10	Correlation between VCO2 and demographic data among the study group.	181
11	Results of different laboratory investigations among the study group.	182

12	Correlation between calculated REE by Harris-Benedict (H-B) equation and different laboratory investigations among the study group.	183
13	Correlation between measured REE by Vmax Encore apparatus and different laboratory investigations among the study group.	184
14	Correlation between VO2 and different laboratory investigations among the study group.	185
15	Correlation between VCO2 and different laboratory investigations among the study group.	186
16	Correlation between predicted BMR by Vmax Encore apparatus and calculated REE by Harris-Benedict (H-B) equation among the study group.	187
17	Correlation between measured REE and predicted BMR by Vmax Encore apparatus among the study group.	187
18	Correlation between calculated REE by Harris-Benedict (H-B) equation and measured REE by Vmax Encore apparatus among the study group.	188

Introduction

Mechanical ventilation is a life saver. Proper ventilation restores levels of oxygen and carbon dioxide in the blood, improving sleep at night and increasing the ability to engage in activities during the day. When combined with proper respiratory hygiene, it can prolong life considerably (*Robinson et al.*, 2003).

Metabolism is acutely modified by any form of severe disease. Resting energy expenditure (REE) is influenced by malnutrition (*Roza et al.*, 2003).

Malnutrition affected 40-50% of the patients in intensive care unit (ICU) (*Giner et al., 1996*).

Malnutrition may be linked to higher morbidity and mortality rates and increased length of stay (Giner et al., 1996).

Thus, caloric requirements and specific metabolism are essential component of the care of these patients.

The fundamental goal of nutritional support is to provide individual patients with their daily nutritional requirements and to determine energy needs of each patient in ICU (*Dark et al.*, 1993).

Indirect calorimetry is a non invasive technique that assesses REE by estimating the heat liberated during metabolic

oxidative processes by measuring oxygen consumption (VO2) and carbon dioxide production (VCO2) (Schutz et al., 1995).

Few previous studies have compared REE measured by indirect calorimetry with REE calculated by using Harris-Benedict predictive equations (*Harris et al., 1919*) an old method detecting REE for adult patients requiring respiratory assistance.

Weissman showed that the difference between measured and calculated REE is substantial from 30% to 49% (Weissman et al., 2003).

Also, Weissman suggested that; REE estimated by indirect calorimetry on the basis of body weight, height, minute ventilation and body temperature is clinically more relevant than are the predictive equations for metabolically stable and mechanically ventilated patients (Weissman et al., 2003).