

SERUM LEVEL OF INTERFERON-GAMMA & INTERLEUKIN-22 IN LEPROSY PATIENTS

THESIS

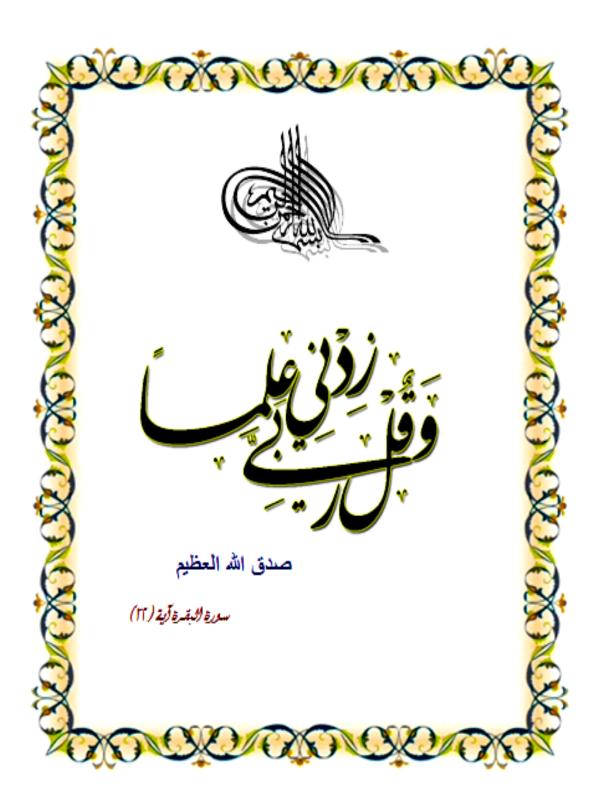
Submitted for Partial Fulfillment of the Master Degree in **Dermatology and Venereology**

By

Shymaa Amer Moftah

M.B.B.Ch. Faculty of Medicine – Ain Shams University

Under Supervision Of


PROF. DR. HANAN MOHAMED AHMED SALEH

Professor of Dermatology and Venereology Faculty of Medicine - Ain Shams University

Dr. RANIA LOTFY

Assistant Professor of Dermatology and Venereology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgment

Thanks to Allah first and foremost. I feel always indebted to Allah; the most kind and the most merciful.

I would like to express my deep gratitude, appreciation, thanks and respect to **Prof. Dr. Hanan Saleh**, Professor of Dermatology and Venereology, Ain Shams University, whose guidance, patience and kindness were behind the accomplishment of this thesis.

I would also like to thank **Dr. Ranya Lotfy**, Lecturer of Dermatology and Venereology, Ain Shams University, for his continuous encouragement, advise, understanding and meticulous supervision.

I would like also to express my great thanks to **Prof. Dr. Dina El Shinawy**, Professor of Biochemistry, Department of Medical

Biochemistry, Ain Shams University, for her valuable help in the

laboratory assay part of this work.

Shymaa Amer

مستوى إنترلوكين 22 وإنترفيرون جاما في مصل مرضى الجذام

رسالة مقدمة للحصول على درجة الماجستير في الأمراض الجلدية والتناسلية وأمراض الذكورة

من

طبيبة/ شيماء عامر مفتاح بكالوريوس الطب والجراحة العامة

تحت إشراف

الأستاذة الدكتورة/ حنان محمد احمد صالح أستاذ الأمراض الجلدية والتناسلية وأمراض الذكورة كلية الطب - جامعة عين شمس

الدكتورة/ رانبة عادل لطفي أستاذ مساعد الأمراض الجلدية والتناسلية وأمراض الذكورة كلية الطب - جامعة عين شمس

كلية الطب جامعة عين شمس 2014

LIST OF CONTENTS

♦ List of Abbreviations	I
♦ List of Figures	IV
♦ List of Tables	VI
♦ Introduction	1
♦ Aim of the Work	4
♦ Review of Literature	
• Chapter 1: Leprosy Overview	5
* Introduction	5
* Epidemiology	5
* Causative Organism	6
* Pathophisiology	7
* Classification and Clinical Picture of Lep	orosy6
* Leprosy Reaction	19
* Histological Finding	23
* Complication of Leprosy	25
* Differential Diagnosis	25
* Diagnosis	27
* Treatment	31
* Prognosis	35
* Prevention	35

	• Chapter 2: Immunology of Leprosy	37
	* Introduction to Immune System	37
	* Immune Response in Leprosy	40
	• Chapter 3:	
	* Interferon – Gamma- IFN-γ	46
	* function of Interferon – Gamma- IFN-γ	51
	* Interferon Gamma in leprosy IFN-γ	45
	• Chapter 4: TH17 and its cytokiens IL22	
	* TH17 cell	55
	* Role of human TH17 cell in human pathology	60
	* respond to infectious agents	63
	* TH17 cellular cytokine IL22	64
•	Subjects and Methods	66
•	Results	63
•	Discussion	96
•	Summary and Conclusion	107
•	References	111
•	Arabic Summary	

LIST OF ABBREVIATIONS

- aa: Amino acids.
- **AD**: Atopic dermatitis
- **APCs**: Antigen-presenting cells
- **BB**: Borderline borderline
- BCG: Bacillus Calmette-Guerin.
- BI: Bacteriological index
- **BL:** Borderline lepromatous
- **BT**: Borderline tuberculoid
- **TYK**:Tyrosine kinase
- **CCR4:** Chemokine receptors 4
- **CLE**: Conserved lymphokine element
- **CMI:** Cell-mediated immunity
- **CSF:** Cerebrospinal fluid.
- **CXCL10:** CXC-chemokine 10.
- **ELISA**: Enzyme-linked immunosorbent assay.
- **EM**: Electron microscopy.
- ENL: Erythema nodosum leprosum
- .**HBV:** Hepatitis B virus
- **HCV**: Hepatitis C virus.
- **HIES:** Hyper-IgE syndrome
- **HLA:** Human leucocytic antigens
- **ID:** Indeterminate leprosy
- **IFN-**γ: Interferon gamma
- **Ig**: Immunoglobulin.
- IL: Interleukin.
- **iNOS:** Inducible nitric oxide synthetase
- **JAK:** Janus kinase family.
- LL: lepromatous leprosy.
- LLp: Polar lepromatous leprosy.
- LLs: Subpolar lepromatous leprosy.
- **MB:** Multibacillary.
- MCP-1: Monocyte chemoattractant protein-1
- MDT: Multi drug therapy.

- MHC: Major histocompatibility complex
- MI: Morphological index.
- *M. leprae*: Mycobacterium lepra.
- MoAb: Monoclonal antibodies.
- Foxp3: Master regulatory transcription factoforkhead fox p3
- NK: Natural killer.
- Non-RL: Non reactional
- **PAF:** Platelet activating factor
- **PB:** Paucibacillary
- **PCR:** Polymerase chain reaction.
- **PDGF:** Platelet-derived growth factor
- **PG:** Prostaglandin.
- **Pg/ml:** Picogram/milliliter.
- **PGL-1:** Phenolic glycolipid 1.
- **PNL:** Pure neuritic leprosy.
- **qRT-PCR**: quantitative Reverse transcriptase-PCR.
- **RA:** Rheumatoid arthritis.
- **RL**: Reactional leprosy.
- **ROR-c:** Thymus specific nuclear receptor.
- **rRNA**: Ribosomal (r) RNA.
- SCs: Schwann cells.
- **SD:** Standard deviation.
- SPSS: Statistical program for social science.
- SSS: Slit-Skin Smear
- **STAT3**: Signal transducer and activator of transcription 3.
- **T-bet:** lineage-specific transcription factors required for the differentiation of Th1.
- TCR: T cell's receptor.
- TGF-β: Transforming growth factor- beta.
- **Th cells:** T helper cells
- **TLR2:** Toll-like receptor 2.
- T Regs: T regulatoryTNF: Tumor necrosis factor.
- TT: Tubercloid leprosy.
- VCAM: Vascular cell adhesion molecule Negative.
- WHO: World Health Organization.

LIST OF FIGURES

Fig.	Title P.	
no.	riue	no.
1	The Ridley–Jopling classification and the relationship with host immunity	••••
2	Indeterminate leprosy	
3	Well-defined hypopigmented tuberculoid lesion	
4	Borderline tuberculoid leprosy	
5	Borderline borderline leprosy	
6	Borderline lepromatous leprosy	
7	Leonine facies	
8	A case of lepromatous leprosy	••••
9	Histoid leprosy	••••
10	Nerve involvement in leprosy	
11	Type 1 reaction	
12	A case of type 2 reaction (ENL)	
13	Histopathology in tuberculoid leprosy	
14	Histopathology in lepromatous leprosy	
15	T-cell differentiation and related cytokines	
16	Schematic representation of Th1 and Th2 differentiation Classification of leprosy	
17	IFN-γ signaling pathway	
18	Immunoregulatory actions of IFN-γ on the immune system .	
19	Model for T helper (Th) or T regulatory (Treg) differentiation from naïve CD4+ T cells	
20	Transcriptional regulation of TH17-cell differentiation	
21	Spectrum of the diagnosis of leprosy	

Fig.	Title	Page
no.	Title	no.
22	A case of leperomatous leper	
23	A case of tuberculoid leperosy	
24	A case of border line leperosy	
25	A case of ENL	
26	A case of Type I lepera reaction	•••
27	Box blot showing serum IFN-γ in cases compared to controls	
28	Box plot showing comparison between the different patients' groups and controls as regards median and range of IFN- γ	

LIST OF TABLES

Table no.	Title	Page no.
1	Ridley's Logarithmic Scale	•••
2	Clinical and laboratory data of patients	
3	Comparison between cases and controls as regards serum IL-22levels (pg/ml) using Mann-Whitney	···
4	Comparison between IL-22 levels in patients presented for first time versus those with recurrence, using Mann-Whitney test	
5	Comparison between BCG vaccination-negative and - positive patients, as regard IL-22 using Mann-Whitney test	
6	Comparison between PB and MB patients. As regards serum IL-22 level (pg/ml), using Mann-Whitney test	
7	Comparison between the different patients' groups using Kruskal-Wallis test, regarding serum IL-22 levels	
8	Comparison between non-reactional and reactional leprosy regarding IL-22 (pg/ml), using Mann-Whitney test	
9	Comparison between the patients' groups using Kruskal-Wallis test regarding	
10	Comparison between cases and controls as regards serum IFN- γ levels (pg/ml), using Mann-Whitney test	
11	Comparison between levels IFN- γ (pg/ml) in patients presented for the first time versus those with recurrence, using Mann-Whitney test.	
12	Comparison between BCG negative and BCG positive patients, regarding IFN- γ (pg/ml), using Mann-Whitney test	
13	Comparison between BCG negative and BCG positive patients, regarding IFN- γ (pg/ml), using Mann-Whitney test	

Table no.	Title	Page no.
14	Comparison between the different patients' groups using Kruskal-Wallis test, regarding serum IFN-γ levels	
15	Comparison between non-reactional and reactional leprosy regarding IFN- γ (pg/ml), using Mann-Whitney test	
16	Comparison between the different patients' groups using Kruskal-Wallis test, and comparison between the different patients' groups and controls using Mann -Whitney test	
17	Results of Spearman Correlation Test between each of the age of the patients, and the disease duration, and each of serum IL-22 and IFN- γ levels	

INTRODUCTION

Leprosy is a chronic infectious disease caused by the obligate intracellular microorganism *Mycobacterium leprae* (*M. leprae*). It is still considered a major health problem in some countries of Asia, Latin America, and Africa, including Egypt. According to the World Health Organization (WHO), approximately 260,000 new patients were affected in 2006 (*WHO*, 2008).

The **Ridley–Jopling** classification of leprosy is based on clinical and histopathological criteria, which suggest a disease with five clinical categories: tuberculoid spectrum (TT), borderline borderline tuberculoid (BT), borderline (BB), borderline lepromatous (BL), and lepromatous (LL) leprosy (Ridley and Jopling, 1966). At one pole, TT leprosy is characterized by few well-defined skin patches, few bacilli (paucibacillary; PB), and vigorous cell-mediated immunity (CMI) (Fitness et al., 2002). At the other pole, LL presents with many skin lesions with uncontrolled proliferation of leprosy bacilli and inefficient CMI (Britton (multibacillary; MB), Lockwood, 2004). Borderline leprosy manifests clinical and immunological features with characteristics between the two forms (Sasaki et al., 2001).

Th subsets play a discriminative role in translating antigen-immunopathology. The identification of novel T cell subsets, such as Th17 cells, is important in order to define the role of the specific immune response in human disease. Across the board of different pathologies, distinct T cell subsets secrete cytokines that not only function on other immune cells, but also instruct target cell (*Burgler S.*, 2009 and Eyerich, K., 2009).

Each T cell subset secretes tissue-instructing cytokines such as IFN- γ (Th1), IL-4 (Th2), and IL-17, IL-22 (Th17)(*Weber et al.*, 2007).

A less well-defined tissue-instructing cytokine is IL-22, which is expressed by Th17 cells (*Kreymborg*, 2007) but also by NK cells (*Cupedo*, 2009). There are many studies have determined that some T cells express IL-22 independently of IL-17, particularly CCR10+ T cells (*Eyerich K*, 2009; *Nograles K.E*, 2009 and *Trifari et al*, 2009).

The function of IL-22 is difficult to generalize: It is not antiinflammatory, nor is it necessarily proinflammatory. In the skin, IL-22 induces antimicrobial peptides, promotes keratinocyte proliferation, and inhibits differentiation, which suggests a role in remodeling wound healing and in innate defense mechanisms (*Boniface*, 2005).

The immune response against intracellular pathogens (including M. leprae) is mainly regulated by interferon- γ (IFN- γ). This cytokine activates macrophages through the production of reactive oxygen intermediates (ROIs), nitric oxide (NO), and enhanced expression of class I and II MHC molecules and costimulatory molecules involved in antigen presentation. IFN- γ also modulates the expression of other antigen processing mechanisms, which promote optimum activation of CD4 and CD8 T cells (**Huang** et al., 2002).