Computerized tomography of paranasal sinus in asthmatic children

Thesis

Submitted For fulfillment of Master Degree in pediatrics

By

Rasha Mohamed Hafez Abdle EL-Gawad

M.B., B.Ch

Under Supervision of

Prof. Dr.Iman Ahmed Ehsan Abdle-Meguid Professor of Pediatrics Faculty of Medicine-Cairo University

Prof.Dr.Hala Hamdi Shaaban

Professor of Pediatrics

Faculty of Medicine-Cairo University

Prof. Dr. Hassan Ali EL-Kiki

Professor of Radiodiagnosis

Faculty of Medicine-Cairo University

ACKNOWLEDGEMENT

First and foremost all thanks and praise be to Allah, the most merciful, for helping me to complete this work.

I would like to express my deepest gratitude and profound thanks to **Prof. Dr.Iman Ahmad Ehsan**, Professor of pediatrics, faculty of medicine, Cairo Uninversity for her constant encouragement, guidance and kind supervision. My deepest appreciation and thanks to **Prof. Dr. Hala Hamdy Saaban**, Prof of Pediatrics, faculty of medicine, Cairo Uninversity for her valuable support and professional experience.

I will be never thankful to **Prof. Dr. Hassan Ali Elkiky**, Professor of radiodiagnosis, faculty of medicine, Cairo University for his great support, Valuable remarks and great effort that allowed completion of this work. I am deeply grateful and thankful to my dad and my mam for the continuous support and help they offered me.

I would also like to thank my sisters, friends, colleagues, and my uncles who passed away while doing this work.

Lastly, my deepest thanks are extended to the children in Abo El Reish Hospital. I hope a lot of benefit will come out of this work for their sake.

ABSTRACT

Asthma is a chronic disease of airways with an underlying inflammatory component. Rhinosinusitis is a common comorbidity of asthma. The association between them seems to be more than epiphenomenon, but it is still a matter of controversy whether a causal relationship exists, wherein rhinosinusitis worsens asthma, or whether they are manifestations in different parts of the respiratory tract of the same underlying disease process. The aim of this study to determine the prevalence of rhinosinusitis in asthmatic children. Thirty asthmatic children aged 3 to 12 years (6.66±4.45year) were recruited for the precent study. Rhinosinusitis which detected by CT sinus is significantly detected (77% of our patients) in asthmatic children. The total esinophilic count is significantly high in asthmatic patients who had rhinosinusitis detected by CT sinus. Our results also revealed also that there is insignificant correlation of both total esinophilic count and IgE level with CT finding, this is in line with that rhinosinusitis and asthma are an expression of a common inflammatory process not always affected by allergy status in which esinophils and IgE play a central role.

Key words:

Asthma-Rhinosinusitis- Computed tomography (CT) scan

Content

Subjects	Page
IIIAbbreviations IIIList of figures IIIList of tables	
Introduction and aim of the work	1
Review of literature	3
Bronchial asthma	
Definition of asthma	3
Epidemiology	4
Types and Classification	6
Risk Factors and Triggers for Asthma	9
Pathophysiology of Asthma	18
Management of Asthma	28
Correlation between bronchial asthma and rhinosinusitis	46
Subjects and methods	63
Results	71
Discussion	85
Conclusion and recommendation	94
Summary	95
References	97
Arabic summary	

List of abbreviation

ADAM33 A disintegrin and metalloprotease 33

AHR Airway hyperresponsiveness

APC Antigen-presenting cells

b-FGF basic fibroblast growth factor

BK Bradykinin

cAMP cyclic-3,5-adenosine monophosphate

CD4 Cluster of differentiation antigen 4

CIS Inhaled corticosteroids

CO carbon monoxide

Cys-LTs Cysteinyl leukotrienes

EIA Exercise-induced asthma

FEV1 Forced expiratory volume in the frist second

FVC froced vital capacity

GINA Global strategy for asthma management and prevention

GM-CSF granulocyte-macrophage colony-stimulating factor

IgE Immunoglobulin E

IL Interleukins

ISAAC International Study of Asthma and Allergies in

Childhood

LABA Long acting Inhaled-B2 Agonists

LBK lysylbradykinin

NO nitric oxide

NSAIDs non-steroidal anti-inflammatory drugs

Ozone

OMC ostiomeatal complex

PAF Platelet activiating factor

PDGF platelet-derived growth factor

PEFR Peak expiratory flow rate

PGD prostaglandins

RAST radioallergosorbent test

SIT Specific immunotherapy

SPT Skin-prick testing

TGF-beta transforming growth factor-beta

Th-cell T helper cell

TNF Tumor necrosis factor

Treg T regulatory

VEGF vascular endothelial growth factor

List of figures

Figure	Page
Figure(1)	Management approach based on control45
Figure(2)	shows the possible link between sinus disease and lower
	airways disease50
Figure(3)	systemic inflammatory mechanisms linking the upper and
	lower airways51
Figure(4)	possible approach to a child with difficult to manage
	asthma62
Figure(5)	Sex distribution of patients72
Figure(6)	Residence of patients73
Figure(7)	Percentage of other atopic conditions of patients74
Figure(8)	Family history of allergic diseases in the studied group74
Figure(9)	Precipitating factors of patients included in this study75
Figure(10)	Severity classification of asthmatics included in the study75
Figure(11)	Percentage of symptoms suggest presence of sinusitis76
Figure(12)	Shows the percentage of sinusitis included in the study76
Figure(13)	Percentage of prescence of sinusitis according to lund-
	Mackay classification77
Figure(14)	percentage of affected sinuses in CT Sinus77
Figure(15)	asthma severity and sinusitis79
Figure(16)	shows comparision between IgE and eosinophilic count in
	patients included in this study81

Figure(17)	shows CT finding and Total esinophilic count in patients	
	included in this study	82
Figure(18)	CT scores according to Lund Mackay classification and	
	Total esinophilic count	33
Figure(19)	shows IgE level and CT finding in asthmatic patient included	1
	in this study	33
Figure(20)	IgE level and CT scores8	4

List of tables

Table	I	Page
Table(1)	Classification of asthma severity by clinical features	6
Table (2)	Potential risk factors for asthma	9
Table (3)	Highlights questions to establish the diagnosis of asthma	28
Table (4)	Differential diagnosis of childhood asthma	34
Table(5)	Estimated Equipotent Daily Doses Of Inhaled	
	glucocorticosteriods in children	37
Table (6)	Choice of inhaler device for children	38
Table(7)	Levels of asthma control	44
Table(8)	Inflammatory changes in the upper and lower airways in	
	response to an allergic stimulus	50
Table(9)	Basic demographic and Clinical data of patients included	
	in the study	71
Table(10)	Descriptive statistics as regarding age, age of onset of	
	asthma	73
Table(11)	CT sinus finding and symptoms suggest prescence of	
	sinusitis	79
Table(12)	Sinusitis and asthma severity in the studied group	80
Table(13)	Sinusitis staging and asthma severity	80
Table(14)	CT finding and total eosinophilic count	82
Table(15)	CT sinus finding and IgE level	84

INTRODUCTION

Asthma have been documented to be increasing in children and young adult worldwide. Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role (GINA, 2008). The chronic inflammation is associated with airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread, but variable, airflow obstruction within the lung that is often reversible either spontaneously or with treatment (Kager and Basel, 2005).

Rhinosinusitis is a common comorbidity of asthma. The association between them seems to be more than epiphenomenon, but it is still a matter of controversy whether a causal relationship exists, wherein rhinosinusitis worsens asthma, or whether they are manifestations in different parts of the respiratory tract of the same underlying disease process (*Wang et al.*, 2006).

The observation that asthma and rhinosinusitis coexist in patients at a higher frequency than would be expected from the prevalence of each in general population provides a strong connection between the upper and lower airways (*Fox and Lockey*, 2003).

Computed tomography (CT) scan of the sinuses are superior to plain radiographs when one needs to study the anatomy, assess pathology, or plan surgical approaches of the sinuses. It is the imaging technique of choice for the study of the nose and paranasal sinuses, and it is considered as "Gold Standard" for diagnosis and management of chronic sinusitis because it also provides an anatomic road map, when surgery is required (*Talay et al.*, 2008).

AIM OF THE WORK:

To detect the prevalence of rhinosinusitis (detected by CT sinus) in asthmatic children and to correlate between rhinosinusitis patients, total esinophilic count, and IgE level.

DEFINITION OF ASTHMA

Asthma is a chronic inflammatory disease of airways that affects approximately 300 million people worldwide (*Kemp, 2003*). Since the pathogenesis of asthma still not clear, much of its definition is descriptive. Based on the functional consequences of airway inflammation, an operational description of asthma is: Asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role (*GINA, 2008*).

The chronic inflammation is associated with airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning. These episodes are usually associated with widespread, but variable, airflow obstruction within the lung that is often reversible either spontaneously or with treatment (*Kager and Basel*, 2005).

Its causes and physiopathological mechanisms are various. The final result is a recurrent obstructive bronchial process, with sibilants and/or dyspnea, which causes an upset in functional respiratory tests, among which the maximum respiratory peak flowmeter diminished for age, sex and height of patient (*Hernando et al.*, 2004).

EPIDEMIOLOGY

Although asthma patterns vary throughout the world, considerable increases in both the prevalence of asthma and its severity have occurred globally over recent decades (*Bach*, 2002& Isolauri et al., 2004& Pearce et al., 2000), and in spite of significant advances in pulmonary medicine, the prevalence of asthma is increasing both in the developing as well as in the developed countries (Sekara, 2003).

Worldwide, 300 million people have asthma. The prevalence is 8-10 times higher in developed countries (e.g., United States, Great Britain, Australia, New Zealand) than in the developing countries. In developed countries, the prevalence is higher in low-income groups in urban areas and inner cities than in other groups (*Mintz*, 2004 & Girish et al., 2005).

Based upon the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire, the 0-7 year incidence for childhood asthma is around 11% and 0-10 years is around 15%. The follow up of asthmatics indicated an almost 5% additional incidence in period 8-10 years of age (*Roel et al.*, 2005).

In Egypt 23.2% of wheezy infants were proved to be real asthmatics, but the incidence of asthma among school children aged 5-15 years old was found to be 8.2% (*El-Hefney et al.*, 1991 &EL Lawindi et al., 2003).

Asthma may have its onset at any age. Thirty percent of patients are symptomatic by 1 year age, whereas 80% to 90% of asthmatic children have their first symptoms before age of 4 to 5 years (*Sly*, *1996*).