Instrumental Analysis of some Nitrogenous Compounds

Thesis Presented

Taghreed Abd El- Fattah Mohamed

B.Pharm. Sci. Cairo University 1988 Diploma of Quality Assurance 2000 Diploma of Hospital Pharmacy 2002

For the Degree of Doctor of Philosophy In Pharmaceutical Sciences "Analytical Chemistry"

Under the Supervision of

Prof. Dr. Laila El Sayed Abd El-Fattah

Professor of Analytical Chemistry Faculty of Pharmacy Cairo University

Prof. Dr. Elham Anwer Taha

Professor of Analytical Chemistry, Head of Analytical Chemistry Department, National Organization for Drug Control and Research (NODCAR)

Department of Analytical Chemistry Faculty of Pharmacy Cairo University (2010).

ACKNOWLEDGEMENT

All my praise, gratitude and deep thanks to *ALLAH*, who enabled me to complete this work. I would like to express my deep thanks and gratitude to my main supervisor *PROF*. *DR*. *LAILA EL-SAYED ABD EL-FATTAH*, *PROFESSOR OF ANALYTICAL CHEMISTRY*, *FACULTY OF PHARMACY*, *CAIRO UNIVERSITY*, for suggesting the point and plan of this study, for her valuable instructions helpful advice, beneficial discussions, generous assistance and enthusiastic guidance through the whole work. I have the honor and pleasure to be under her supervision.

All my thanks are not enough to express my feeling of sincere gratitude to *DR. ELHAM ANWER TAHA, HEAD OF RAW MATERIALS,*AND PROFESSOR OF ANALYTICAL CHEMISTRY, NATIONAL ORGANIZATION FOR DRUG CONTROL AND RESEARCH, for her continuous encouragement, beneficial discussions, sincere help offered and for providing all the facilities during the work.

My special thanks to my colleagues and staff members in Raw Materials

Department, National Organization for Drug Control and Research, for their

friendly cooperation.

My deepest thanks and appreciation to my *MOTHER*, for her assistance and support through out the difficult times during all stages of the work. I thank her very much.

Also I would like to thank my daughter *GHADA* and my son *AMR*, for bearing with me during this study patience and understand.

Taghreed Abd El Fattah

تحليل ألى لبعض المركبات النيتروجينية

رسالة مقدمة من

الصيدلانية / تغريد عبدالفتاح محمد محمد

بكالوريوس كلية الصيدلة جامعة القاهرة 1988 دبلومة/رقابة و تأكيد جودة 2000 دبلومة / صيدله مستشفيات 2002

للحصول على درجة / دكتوراه الفلسفة في العلوم الصيدلية (الكيمياء التحليلية)

تحت اشراف

الأستاذة الدكتورة/ ليلى السيد عبدالفتاح أستاذ الكيمياء التحليلية كلية الصيدلة- جامعة القاهرة

الأستاذة الدكتورة / الهام انور طه أستاذ الكيمياء التحليلية رئيس شعبة الكيمياء التحليلية الهيئة القومية للرقابة و البحوث الدوائية (NODCAR)

قسم الكيمياء التحليلية كلية الصيدلة جامعة القاهرة 2010

CONTENTS

Preface

Summary

PART ONE

	TAKI UNL	compounds
	General Introduction	Page
1.0.	Introduction	1
2.0	Studied compounds	6
2.1.	Amlodipine besylate, (AM)	6
2.2.	Dobutamine Hydrochloride,(DO)	12
2.3.	Carvedilol,(CA)	18
2.4.	Acrivastine, (AC)	24
	PART TWO	
Fl	uorimetric Determination of Amlodipine Besy	late,
D	obutamine Hydrochloride and Carvedilol in I) rug
S	Substances, Drug Products and in Spiked Hun	nan
	Plasma.	
1.0.	. Introduction of fluorimetric methods	29

Section A

Stability-indicating fluorimetric methods for the determination of Amlodipine Basalt in Drug Substance, Drug product and in Spiked Human Plasma.

1.0.	Introduction	3
2.0.	Experimental	3
2.1.	Apparatus	3
2.2.	Samples	3
2.3.	Materials and reagents	3
2.4.	Stock solutions	3
2.5.	Working standard solutions	3
2.6.	Procedures	3
2.7.	Method validation	4
2.7.1.	Linearity	4
2.7.2.	Accuracy	4
2.7.3.	Precision	4
2.7.4.	Specificity	4
2.7.5.	Robustness	4
2.7.6.	Application on drug product	4
2.7.7.	Standard addition technique	4
2.8.	Application of the proposed method to the analysis	4
	of amlodipine besylate in spiked plasma	
3.0.	Results and discussion	4

Section B

Fluorimetric Determination of Dobutamine Hydrochloride in Drug Substance, Drug Product, and in Spiked Human Plasma using Organized Media.

1.0.	Introduction
2.0.	Experimental
2.1.	Apparatus
2.2.	Samples
2.3.	Materials and reagents
2.4.	Stock solutions
2.5.	Working standard solutions
2.6.	Procedures
2.7.	Method validation
2.7.1.	Linearity
2.7.2.	Accuracy
2.7.3.	Precision
2.7.4.	Specificity
2.7.5.	Robustness
2.7.6.	Application on drug product
2.7.7.	Standard addition technique
2.8.	Application of the proposed method to the analysis
	of dobutamine hydrochloride in spiked plasma
3.0.	Results and discussion

Section C

Quantitative Determination of Carvedilol by Fluorescence Labeling using 5- Dimethylaminonaphthalene-1-

Sulphonyl Chloride.

1.0.	Introduction
2.0.	Experimental
2.1.	Apparatus
2.2.	Samples
2.3.	Materials and reagents
2.4.	Stock solutions
2.5.	Working standard solutions
2.6.	Procedures
2.7.	Method validation
2.7.1.	Linearity
2.7.2.	Accuracy
2.7.3.	Precision
2.7.4.	Robustness
2.7.5.	Application on drug product
2.7.6.	Standard addition technique
2.8.	Application of the proposed method to the analysis
	of carvedilol in spiked plasma
3.0.	Results and discussion

PART THREE

Spectrophotometric Determination of Amlodipine besylate, Dobutamine Hydrochloride, Carvedilol, and Acrivastine in Drug Substance and Drug Product.

Section A

Spectrophotometric determination of amlodipine besylate, dobutamine hydrochloride, and carvedilol using p-dimethylaminocinnamaldehyde

(p-DAC).

1.0.	Introduction	120
2.0.	Experimental	120
2.1.	Apparatus	120
2.2.	Samples	120
2.3.	Materials and reagents	120
2.4.	Stock solutions	121
2.5.	Working standard solutions	121
2.6.	Procedures	121
2.7.	Method validation	123
2.7.1.	Linearity	123
2.7.2.	Accuracy	123
2.7.3.	Precision	124
2.7.4.	Robustness	124
2.7.5.	Application on drug products	124
2.7.6.	Standard addition technique	125
3.0.	Results and discussion	125

Section B

Ratio Derivative Spectrophotometric ¹DD Method for Determination of Dobutamine HCl in presence of its impurity (Dopamine HCl).

1.0.	Introduction	142
2.0.	Experimental	142
2.1.	Apparatus	142
2.2.	Samples	142
2.3.	Materials and reagents	142
2.4.	Stock solutions	143
2.5.	Working standard solutions	143
2.6.	Procedures	144
2.7.	Method validation	144
2.7.1.	Linearity	144
2.7.2.	Accuracy	145
2.7.3.	Precision	145
2.7.4.	Specificity	145
2.7.5.	Application on drug product	146
2.7.6.	Standard addition technique	146
3.0.	Results and discussion	146

Section C

Spectrophotometric Determination of Acrivastine in Drug Substance, Drug Product and in Presence of its Degradants via Ion-pair Formation

with Methyl Orange.

1.0.	Introduction	155
2.0.	Experimental	155
2.1.	Apparatus	155
2.2.	Samples	155
2.3.	Materials and reagents	155
2.4.	Stock solutions	156
2.5.	Procedures	158
2.6.	Method validation	160
2.6.1.	Linearity	160
2.6.2.	Accuracy	160
2.6.3.	Precision	160
2.6.4.	Specificity	161
2.6.5.	Robustness	161
2.6.6.	Application on drug product	161
2.6.7.	Standard addition technique	161
3.0.	Results and discussion	162

PART FOUR

Stability-Indicating Chromatographic Methods for the Determination of Dobutamine Hydrochloride and Acrivastine.

Section A

Stability- Indicating TLC Densitometric Method for the Determination of Dobutamine HCl.

1.0.	Introduction	178
2.0.	Experimental	178
2.1.	Apparatus	178
2.2.	Samples	178
2.3.	Materials and reagents	178
2.4.	Stock solutions	179
2.5.	Working standard solutions	179
2.6.	Chromatographic conditions	180
2.7.	Method validation	180
2.7.1.	Linearity	180
2.7.2.	Accuracy	181
2.7.3.	Precision	181
2.7.4.	Specificity	181
2.7.5.	Robustness	181
2.7.6.	Application on drug product	182
2.7.7.	Standard addition technique	182
3.0.	Results and discussion	182

Section B

Stability- indicating TLC Densitometric Method for the Determination of Acrivastine

1.0.	Introduction	192
2.0.	Experimental	192
2.1.	Apparatus	192
2.2.	Samples	192
2.3.	Materials and reagents	192
2.4.	Stock solutions	193
2.5.	Chromatographic conditions	194
2.6.	Method validation	194
2.6.1.	Linearity	194
2.6.2.	Accuracy	195
2.6.3.	Precision	195
2.6.4.	Specificity	195
2.6.5.	Robustness	195
2.6.6.	Application on drug product	196
2.6.7.	Standard addition technique	196
3.0.	Results and discussion	196

Section C

Kinetic Study on Degradation of Acrivastine by

TLC Method

1.0.	Introduction	211
2.0.	Experimental	211
2.1.	Apparatus	211
2.2.	Samples	211
2.3.	Materials and reagents	211
2.4.	Chromatographic conditions	212
2.5.	Kinetic studies	212
2.6.	pH-rate profile	213
3.0.	Results and Discussion	214
	PART FIVE	
General	Discussion	222
Referen	ce	232
Arabic	Summary	1

List of Figures

No Page

1	Effect of solvents on the fluorescence intensity of the native fluorescence of amlodipine besylate (12µgml ⁻¹).	58
2	Excitation and emission spectra of: The native fluorescence of AM (4μgml ⁻¹) in water. The reaction product of AM (4μgml ⁻¹) and 0.5-ml (1.33% w/v) of AlCl ₃ . The reaction product of AM (4μgml ⁻¹) and 2-ml (1.5 % w/v) of ZnSO ₄ . The oxidative degradant of AM (6μgml ⁻¹). The acid and alkaline degradants of AM (4μgml ⁻¹).	59
3	Effect of volume of 1.33% w/v of aluminum chloride solution, and 1.5% w/v of zinc sulfate solution on the fluorescence intensity of Al ³⁺ -amlodipine besylate (3μgml ⁻¹) and Zn ²⁺ -amlodipine besylate (6μgml ⁻¹) reaction products.	60
4	Effect of different pH on the fluorescence intensity of Al ³⁺ -amlodipine besylate (3μgml ⁻¹) and Zn ²⁺ -amlodipine besylate (6μgml ⁻¹) reaction products.	60
5	Effect of volume of phthalate buffer pH 6 and McIlavine buffer pH 4 on fluorescence intensity of Al ³⁺ -amlodipine (3µgml ⁻¹)and Zn ²⁺ -amlodipine (6µgml ⁻¹) reaction products.	61
6	Effect of time on fluorescence intensity of Al ³⁺ - amlodipine (3μgml ⁻¹) and Zn ²⁺ -amlodipine (6μgml ⁻¹) reaction products.	61
7	Effect of solvents on the fluorescence intensity of Al^{3+} -amlodipine $(4\mu gml^{-1})$ and Zn^{2+} -amlodipine $(6\mu gml^{-1})$ reaction products.	62
8	Linearity of the fluorescence intensity of the native of amlodipine besylate (1.0-12.0µgml ⁻¹), Al ³⁺ -amlodipine besylate (0.2-4.0µgml ⁻¹) and Zn ²⁺ -amlodipine besylate (0.2-8.0µgml ⁻¹) reaction products.	62
9	Stoichiometry of the reaction between amlodipine besylate and aluminum chloride adopting Job's of continuous variation method using 0.5×10^{-3} M solutions.	63

10	Stoichiometry of the reaction between amlodipine besylat and zinc sulfate adopting Job's of continuous variation method using 0.5 x 10 ⁻³ M solutions.	63
11	Effect of different surfactants on the fluorescence intensity: of Al ³⁺ -amlodipine besylate (3μgml ⁻¹) reaction product. of Zn ²⁺ -amlodipine besylate (2μgml ⁻¹) reaction product.	64
12	Excitation and emission spectra: The native fluorescence of AM (4µgml ⁻¹) in water. The reaction product of AM (4µgml ⁻¹) and 0.5-ml (0.1M) of AlCl ₃ and 2 ml (10 mM) of SDS.	64
13	Effect of concentration of SDS on the fluorescence intensity of Al ³⁺ -amlodipine besylate- SDS (2μgml ⁻¹) reaction product.	65
14	Linearity of the fluorescence intensity of Al ³⁺ - amlodipine besylate- SDS reaction product to the corresponding concentration of amlodipine besylate (0.1-6.0µgml ⁻¹).	65
15	Excitation and emission spectra of the native of AM (12µgml ⁻¹) in water. Excitation and emission spectra of the reaction of AM (4µgml ⁻¹) and 3ml (0.2% w/v) FeCl ₃ .	66
16	Effect of volume of 0.2% w/v FeCl ₃ solution on the fluorescence intensity of amlodipine besylate (12μgml ⁻¹)-FeCl ₃ reaction product.	67
17	Effect of solvents on the fluorescence intensity of Fe ³⁺ - amlodipine besylate (12µgml ⁻¹) reaction product.	67
18	Linearity of the decrease in fluorescence intensity of the reaction product between amlodipine besylate and $FeCl_3$ (1.0-20.0 μgml^{-1}).	68
17	Effect of solvents on the fluorescence intensity of Fe ³⁺ - amlodipine besylate (12µgml ⁻¹) reaction product.	67
18	Linearity of the decrease in fluorescence intensity of the reaction product between amlodipine besylate and FeCl ₃	68