HUMAN LEUKOCYTE ANTIGEN (HLA) AND AUTOANTIBODIES ASSOCIATION WITH JUVENILE SYSTEMIC LUPUS ERYTHEMATOSUS

Thesis
Submitted in Partial Fulfillment for

M.D.

IN

RHEUMATOLOGY AND REHABILITATION

by

ABEER ALY HOSNI LAZ M.B., B.Ch., M.Sc.

Supervisors

Prof. Dr. AYMAN KAMAL EL GARF
Professor of Rheumatology and Rehabilitation
Cairo University

Prof. Dr. MOAMENA ABD EL WAHAB KAMEL
Professor of Clinical Pathology
Cairo University

Prof. Dr. SAMIA SALAH EL DIN MAHMOUD
Professor of Pediatrics
Cairo University

Prof. Dr. AZZA ABOU EL INEIN
Professor of Clinical Pathology
Cairo University

CAIRO UNIVERSITY 2009

Dedication

DEDICATION

To My Parents

I dedicate this humble work to my mother and my father, who were and will always be my tower of support. I also dedicate every success and every achievement I accomplish to them, as their endless love, care and guidance were the real inspiration for every good work I do.

Acknowledgement iii

ACKNOWLEDGEMENT

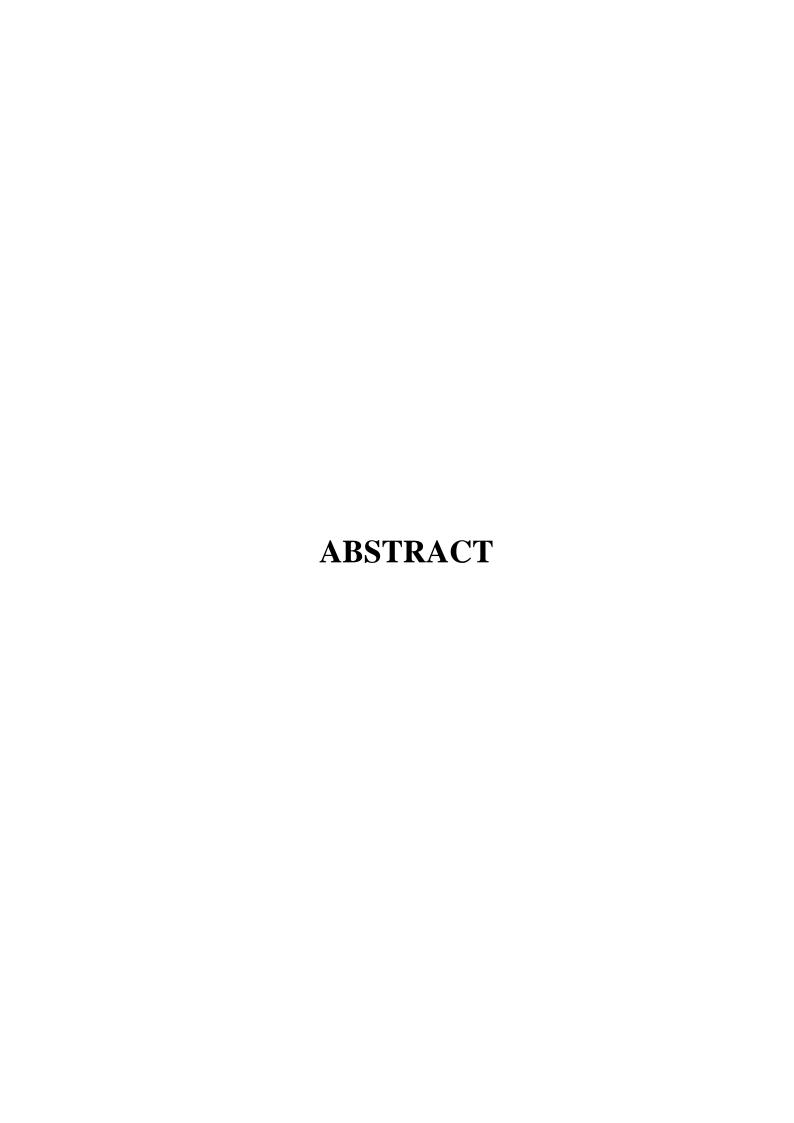
To Prof. Dr. Ayman Kamal El Garf, professor of rheumatology and rehabilitation, Cairo University, my deepest gratitude and thankfulness for his support, his precious time and sincere concern. His distinguished scientific guidance and remarks contributed the greatest deal of this work. My endless appreciation to him not only for creating this work but for teaching me and many others, dedication to work, respect of patients, and for sharing with us his priceless clinical experience.

I am very proud and lucky to have Prof. Dr. Moamena Abd El Wahab Kamel, professor of clinical pathology, Cairo University, supervising this thesis. I owe her lots and lots of thanks for allowing me to join her teamwork and investigate such a valuable subject that would have been impossible without her help.

As for Prof. Dr. Samia Salah El Din Mahmoud, professor of pediatrics, Cairo University, I owe her the favour of this thesis born, with her extreme help and great effort in selecting the studied patients, and for the valuable time and guidance she gave.

To Prof. Dr. Azza Abou El Inein. Professor of clinical pathology, Cairo University, my deepest thankfulness for her honest and genuine supervision and her great effort in delivering this thesis.

I am extremely obliged and indebted to Prof. Dr. Hala Sheeba, professor of clinical pathology, Cairo University, for her precious time and effort, and her valuable contribution concerning the immunological and molecular genetic investigations included in this thesis.


Acknowledgement iv

I am grateful to Prof. Dr. Enas El Attar, professor of statistics in the Cancer Institute, Cairo University, for her sincere help regarding the statistics of this study.

I am highly honoured to express my deepest gratitude and appreciation to Prof. Dr. Samia Fadda, professor of rheumatology and rehabilitation, Cairo University. I am extremely indebted to her, as her sincere guidance, concern and encouragement paved the way for me to resume my postgraduate studies. Her endless support, her precious knowledge and her valuable lectures contributed a very great deal to our department. Prof. Dr. Samia Fadda, with her scientific value and her honest instructions to all the members of this department, was qualified with excellence to be the Godmother of the Rheumatology and Rehabilitation department, Cairo University. I bow my head with extreme modesty in front of her distinguished position in the Rheumatology and Rehabilitation branch, and the unique place she occupies in our hearts.

I would also like to express my deepest gratitude and appreciation to all members of the Rheumatology and Rehabilitation Department, Cairo University, for making my work in the department enjoyable and fruitful.

Finally, I wish to thank my family members for their endless help, support, and encouragement.

Abstract

ABSTRACT

A person's ability to manufacture pathogenic immunoglobulin in SLE and sustain its production depends on intrinsic abnormalities of B and T lymphocytes, and those in turn depend on inheriting an appropriate number of susceptibility genes, lacking protective genes, and encountering an environmental stimulus that sets the whole process into action. The aim of this work is to elucidate the role of HLA genes and autoantibodies in the clinical presentation of SLE and thus to evaluate the usefulness of such genetic and autoimmune markers in predicting disease course and outcome. Fifty three Egyptian patients with childhood onset systemic lupus erythematosus were examined for clinical manifestations, detection of ANA, anti-DNA, anti-Ro (SS-A), anti-La (SS-B), anti-Sm, anti-RNP and anti-cardiolipin antibodies and for determination of HLA-DR alleles. This study showed an association of certain MHC antigens and autoantibodies with the development of certain disease manifestations.

Key Words

Juvenile systemic lupus erythematosus in Egyptians
Autoantibodies and HLA in childhood onset systemic lupus
erythematosus

Contents

CONTENTS

	page
LIST OF ABBREVIATIONS	vii
LIST OF DIAGRAMS	X
LIST OF FIGURES	xi
LIST OF TABLES	xiv
INTRODUCTION AND AIM OF WORK	1
REVIEW OF LITERATURE	7
Autoantibodies Human Leukocyte Antigen	7 133
PATIENTS AND METHODS	215
RESULTS	249
DISCUSSION	309
SUMMARY AND CONCLUSION	459
BIBLIOGRAPHY	475
ARARIC SUMMARY	

List of Abbreviations vii

LIST OF ABBREVIATIONS

Ab Antibody

aCL Anticardiolipin

Ag Antigen

ANA Antinuclear antibody aPL Antiphospholipid

APS Antiphospholipid syndrome

ARA American Rheumatism Association

C.C.J. Costochondral joint

CDR Complementary determining region

CHB Congenital heart block

CREST Calcinosis – Raynaud's phenomenon – esophageal

dysmotility - sclerodactyly - telangiectasias

CSF Cerebrospinal fluid

CTscan Computer tomographic scan
CVA Cerebrovascular accidents
DLE Discoid lupus erythematosus

DNA Deoxyribonucleic acid dsDNA Double stranded DNA

EBV Epstein-Barr virus ECG Electrocardiograph E coli Escherichia coli

EEG Electroencephalograph

ELISA Enzyme linked immunosorbent assay

ENA Extractable nuclear antigen

FANA Fluorescent antinuclear antibody

FW Frame work

HLA Human leukocyte antigen

IC Immune complex

Id Idiotype

Ig Immunoglobulin

JRA Juvenile rheumatoid arthritis

LAC Lupus anticoagulant

List of Abbreviations viii

LIST OF ABBREVIATIONS

LCA Lymphocytotoxic antibody

mAb Monoclonal antibody

M.C.Ps. Metacarpophalangeal joints

MCTD Mixed connective tissue disease

M.T.Ps. Metatarsophalangeal joints

MHC Major histocompatibility complex

MLC Mixed lymphocyte cultures
MRI Magnetic resonance imaging
NLS Neonatal lupus syndrome

NOR-90 90 kilodalton protein of the chromosomal nucleolar

organizing region

nRNP Nuclear ribonucleoprotein

NSAIDs Nonsteroidal antiinflammatory drugs PAPS Primary antiphospholipid syndrome

PBS Physiologic buffer solution

PCNA Proliferating cell nuclear antigen

PCR Polymerase chain reaction

P.I.Ps. Proximal interphalangeal jointsPSS Progressive systemic sclerosisPTT Partial thromboplastin time

R.O.M. Range of motion

RA Rheumatoid arthritis

rbc Red blood cell

RF Rheumatoid factor

RFLP Restriction fragment length polymorphism

RIA Radioimmunoassay RNA Ribonucleic acid RNA P II RNA polymerase II RNP Ribonucleoprotein RP1 RNA polymerase 1

RR Relative risk

S.C.J. Sternoclavicular joint

ScL Scleroderma

List of Abbreviations ix

LIST OF ABBREVIATIONS

SCLE Subacute cutaneous lupus erythematosus

scRNP Small cytoplasmic ribonucleoprotein

SD Standard deviation

SLAM Systemic Lupus Activity Measure

SLE Systemic lupus erythematosus

Sm Smith

snRNP Small nuclear ribonucleoprotein

SPARC Secreted protein acidic rich in cysteine

(also called osteonectin, BM-40)

SPECT Single photon emission computed tomography

SS Sjogren's syndrome ssDNA Single stranded DNA

SSO Sequence specific oligonucleotides

TAP 1,2 Transporters of antigenic peptides 1 and 2

TcR T cell receptor
Th cells T helper cells

T.I.Ps. Terminal interphalangeal joints

TM Transverse myelitis

T.M.Js. Tempromandibular jointsTNF Tumor necrosis factor

 U_1RNP Uridine 1 ribonucleoprotein V_H Variable region of heavy chain V_L Variable region of light chain

wbc White blood cell

WHO World health organization

List of Diagrams x

LIST OF DIAGRAMS

Diagram		page
I	Patterns of immunofluorescence staining for antinuclear antibodies	16
II	Mechanism of immunofluorescence techniques	20
III	Algorithm for the use of ANAs in the diagnosis of connective tissue disorders	33
IV	Disease susceptibility	135
V	The spectrum of HLA class II typing	147
VI	Pathways of HLA class I and II molecule assembly and antigen processing	169
VII	Family structure for determination of haplotype relative risk	175

List of Figures xi

	LIST OF FIGURES	
Figure		page
1	Indirect immunofluorescence	15
2	Different patterns of anti-nuclear antibodies (ANA)	19
3	Precipitin reactions in gels: immuno-double-diffusion	21
4	Enzyme-linked immunosorbent assay (ELISA)	24
5	Immunoprecipitation	27
6	Immunoblotting	29
7	Organization of human MHCs	139
8	Genes within the human class I region	139
9	New nomenclature for HLA-B27 alleles	141
10	HLA-D region	143
11a	Microcytotoxicity testing for HLA antigens	148
11b	HLA-D typing by mixed lymphocyte reactions	148
11c	DNA typing by RFLP analysis	149
11d	PCR amplification of DNA sequences	150
12a	A model of an intact human MHC class I molecule	155
12b	The extracellular domains of MHC class I molecule	156
13	The top surface of HLA-A2	157
14	Ribbon diagrams of the extracellular domains of class I	

List of Figures xii

	LIST OF FIGURES	
Figure		page
	and class II HLA-DR1	160
15	The peptide binding of class I (H-2 K^b) and class II (HLA-DR1)	161
16	Hydrogen bonds with the main chain of the bound peptide	163
17	Influence of HLA on immune responses	165
18	Schematic representation of major histcompatibility complex (MHC-restricted CD4 ⁺ Tcell recognition)	166
19	Inheritance of HLA genes	176
20	Characteristic malar rash of a ten years old male	246
21	Characteristic malar rash of a 3 years old girl	246
22	Typical erythematous rash on legs of a twelve years old male	246
23	Typical maculopapular rash on arm of eleven years old	246
24	female Vasculitic ulceration at upper anterior chest wall of a ten years old male	247
25	Severe vasculitic ulcerations of digital tips of feet of a 3 years old SLE female	247
26	DNA amplification of DR alleles by PCR	248
27	HLA frequencies among cases and controls	259
28	Autoantibodies frequencies among cases and controls	266
29	HLA frequencies in relation to antinuclear antibody frequencies among cases	272