. /إيهاب السيد

أستاذ التركيبات السنية المثبتة كلية طب الفم و الأسنان جامعة القاهرة

اإيمان.

أستاذ التركيبات السنية المثبتة كلية طب الفم و الأسنان جامعة القاهرة بين السيراميك السيراميك السيراميك (معملية) علية

حديث القاهرة تمهيدا الماجستير (الاستعاضات السنية)

الطبيبة/ **بكالوريوس**

والتكنولوجيا

لية القاهرة

Abstract

The present investigation was designed to study the effect of two different all-ceramic crown construction techniques namely; the IPS Empress pressable, and the machinable techniques, on the marginal/internal fit and the fracture resistance of the constructed samples. A stainless-steel die was machine milled to simulate a prepared maxillary first premolar. A total of 20 all-ceramic samples were constructed to represent two groups of 10 samples each. Each group was subdivided into two equal subgroup of five randomly selected samples for the internal and marginal discrepancy evaluation and the fracture resistance tests.

Results revealed that the highest mean marginal discrepancy was obtained by the IPS Empress Esthetic Crowns (96.7 microns), while the highest mean internal gap was obtained by the IPS Empress CAD Crowns (58 microns), and the highest mean fracture strength obtained by IPS Empress Esthetic crowns (1224.6 Newtons). Despite of the non significant statistical analysis results, a correlation was observed between the fit and the fracture resistance for the tested construction techniques.

Keywords

- Internal fit
- Fracture resistance
- Pressable Ceramics
- Machinable Ceramics
- Correlation

Correlation between the internal fit and fracture resistance of two different all ceramic systems (An in vitro study)

Thesis Submitted to
The Faculty of Oral and Dental Medicine, Cairo University,
In Partial Fulfillment of the Requirements for

The Master Degree in Fixed Prosthodontics

By Ola Abdulredha Hasan Redha B.D.S.(MUST)

Faculty of Oral and Dental Medicine,

Cairo University 2009

Supervisors

Dr. Ihab E. Mosleh

Professor of fixed prosthodontics Department Faculty of Oral and Dental Medicine Cairo University

Dr. Eman M. Anwar

Professor of fixed prosthodontics Department Faculty of Oral and Dental Medicine Cairo University

بسم (لله (لرحن (لرحيم

وقل اعملوا فسيرى الله عملكم ورسوله والمؤمنون وستروون (١٠٥) إلى عالم الغيب والشهاوة فينبئكم بما لانتم تعملون (١٠٥) صرق الله العظيم

سورة (التوبة

Dedication

This work is dedicated to the people in my life who have given me so much support and love, and because of whom my life is worth living.

My dear mother, the light that leads the way

My dear father, the strength that keeps me going

CONTENTS

	Page
List of tables	ii
List of figures	iii
Introduction	1
Review of literature	3
Aim of the study	27
Materials and methods	28
Results	64
Discussion	75
Summary and Conclusions	83
References	87
Arabic summary	

LIST OF TABLES

	Page
Table (1): The materials used in this study	28
Table (2): Factorial designing & sample grouping	30
Table (3) : Comparison between mean marginal gap distances (μm)	
of both techniques	66
Table(4): Comparison between mean internal gap distances (μm)	
of both tested techniques	68
Table(5): Comparison between mean fracture resistances	
(Newtons) of both tested techniques	69
Table(6): Results of Pearson's correlation coefficient for the	
correlation between marginal gap, internal gap and	
fracture resistance for both groups	70

LIST OF FIGURES

	Page
Figure (1): IPS Empress Esthetic Ingots	29
Figure (2): IPS Empress CAD blocks	29
Figure (3): Variolink II (dual cure resin cement)	29
Figure (4): The stainless steel master die	31
Figure (5): Schematic representation of the constructed stainless-	
steel master die	31
Figure (6i): a- The stainless steel master die, b-The split copper	
counter die, c-The external copper ring with the	
tightening screw used in this study	32
Figure (6ii): The assembled stainless steel master die	32
Figure (7i): a- The perforated copper cylindrical tray, b- the master	
die in the slot of a circular plastic base	33
Figure (7ii): The impression mold of the stainless steel die	34
Figure (8): The stone replica of the master die with 2 layers of die	
spacer	35
Figure (9a): The split counter die used for wax pattern construction	
on the stone die	35
Figure (9b): Finished wax pattern	35
Figure (10): Two sprued wax patterns oriented onto the ring base	36
Figure (11): The sprued patterns inside the investing ring ready for	
investing	36
Figure (12): The paper ring used for investing together with the ring	
stabilizer	37
Figure (13): Burnout heating furnace	38
Figure (14a): The EP600 Press Furnace	39

Figure (14b): The investment ring placed at the centre of EP600
press furnace
Figure (15): The investment ring left to cool on the IPS Empress
cooling rack
Figure (16) : The length of the AlOx plunger marked on the ring
Figure (17): The investment ring separated at the predetermined
mark using a separating disc
Figure (18): Measuring crown thickness using dial caliper
Figure (19): The pressable ceramic crown seated on the master
stainless steel die
Figure (20): Cerec MCXL InLab milling machine
Figure (21): The material used for powdering procedure before
optical impression, Cerec Liquid(left), and Cerec
Propellent (right)
Figure (22): The master stainless steel die covered with the
reflecting agent
Figure (23): The InEOS dental digitizer machine for the Inlab
system
Figure (24): Optical impression (live image) of the master stainless
steel die on the monitor screen (the scan)
Figure (25): Optical impression (live image) of the IPS Empress
crown on the monitor screen (the scan)
Figure (26) : The virtual model of the master stainless steel die
Figure (27) : Defined finish line of the virtual model
Figure (28): Adjustment of the path of insertion and the design of
the IPS Empress CAD crown
Figure (29): Checking for the standardized IPS Empress CAD
crown thickness using cut tool

49
50
51
51
51
53
53
54
54
55
56
57
58
59
61
61

Figure (46) :	The universal testing machine	63
Figure (47) : 7	Test sample subjected to static compressive load	63
Figure (48) : 7	The mean marginal gap distance (µm) of both tested	
	techniques	66
Figure (49) : 1	Representative predetermined samples of vertical	
	marginal gap measurement after cementation	
	(magnification × 15)	67
Figure (50) : 7	The mean internal gap distance (µm) of both tested	
	techniques	68
Figure (51) : 7	The mean fracture resistance (Newtons) of both tested	
	techniques	69
Figure (52) : 7	The correlation between the marginal discrepancy and	
	the internal gap distance of the pressable IPS Empress	
	Esthetic all-ceramic crown system	71
Figure (53) : 7	The correlation between the marginal discrepancy (gap	
	distance) and the internal gap distance of the	
	machinable IPS Empress CAD all-ceramic crown	
	system	71
Figure (54) : 7	The correlation between the marginal discrepancy (gap	
	distance) and the fracture resistance of the pressable	
	IPS Empress Esthetic all-ceramic crown system	72
Figure (55) : 7	The correlation between the marginal discrepancy (gap	
	distance) and the fracture resistance of the machinable	
	IPS Empress CAD all-ceramic crown system	73
Figure (56) : 7	The correlation between the internal fit (gap distance)	
	and the fracture resistance of the pressable IPS	
	Empress CAD all-ceramic crown system	74
Figure (57) : 7	The correlation between the internal fit (gap distance)	
	and the fracture resistance of the machinable IPS	
	Empress CAD all-ceramic crown system	74

ACKNOWLEDGEMENTS

I would like to express my endless gratefulness to Gracious God for helping me to achieve this work.

I would like to acknowledge with all respect and appreciation, the devoted effort of *Dr. Ihab Mosleh*, Professor of Fixed Prosthodontics, Faculty of oral and dental medicine, Cairo University, for his considerable support, valuable supervision, and help. I have admit that his encouragement, suggestions, and high quality of knowledge made all the problems facing me easier to be solved. His enthusiasm and supervising ability to research will always inspire me. I cannot find sufficient words to express my gratitude to his generosity, kindness and dedication through his constant step by step follow up in my research work. I owe him a lot and deeply thank him not only for his effort in this work but for all his good deeds and sincere advices throughout the years.

I'm deeply grateful to *Dr. Eman Anwar*, Professor of Fixed Prosthodontics, Faculty of oral and dental medicine, Cairo University, for her sincere care, valuable guidance and continuous encouragement that contributed very much in this achievement. I find it difficult to sufficiently thank her for such a penetrating guidance, she was a great help through all the phases of this thesis. Her criticism was always valuable and extremely helpful to me during the course of this work. To her I owe much more than words to say.

Many thanks should also be given to all staff members and my colleagues of Fixed Prosthodontics department, Faculty of oral and dental medicine, Cairo University, and for all those who participated in making this work possible.

Last but not least I would like to thank my family for being there for me.