Prevalence of Hepatitis C Virus among Egyptian Patients admitted to the Rheumatology Department in el Kasr el Aini Hospital

Thesis submitted for fulfillment of the M.Sc. degree in Rheumatology and Rehabilitation

Presented by

Kamal Ayman El-Garf

M.B.; B.Ch.
Faculty of Medicine, Cairo University

Under the supervision of

Prof. Dr. Bassel Kamal El-Zorkany

Professor of Rheumatology and Rehabilitation Faculty of Medicine, Cairo University

Prof. Dr. Hala Fathy Shieba

Professor of Clinical Pathology Faculty of Medicine, Cairo University

Dr. Rasha El-Sayed Gheith

Assistant Prof. of Rheumatology and Rehabilitation Faculty of Medicine, Cairo University

Faculty of Medicine, Cairo University 2010

Dedication

To my family, who supported me throughout my life, I dedicate this work to you all, thanks a lot. Special thanks to my dad and my professor whose endless love and guidance made this work possible.

Abstract

Aim of the work:

The aim of this work is to study the prevalence of HCV among patients admitted to the rheumatology ward, Rheumatology and Rehabilitation Department, Cairo University hospitals.

Patients and Methods:

157 patients admitted to the rheumatology Department, Cairo University between January 1st and June 30th, 2009 were included in this study. All of them were subjected to the following:

- Detailed History taking and thorough clinical examination, routine laboratory data including ESR, CBC, liver function tests, kidney function tests and auto-antibodies.
- All patients were screened for HCV antibodies (Anti-HCV) using ELISA technique, when needed, other laboratory tests such as HCV-RNA, cryoglobulins etc, were done.

Results:

29 out of 157 patients (18.5%) were positive for HCV antibody. 18 patients of them (62%) were admitted primary due to rheumatic disease and concomitantly associated with HCV antibodies. On the other hand, 11 patients (38%) were admitted mainly due to rheumatic extra-hepatic manifestations, which represent 7% of all patients admitted to the Rheumatology ward during the time period of the study. Arthritis, palpaple Purpura, digital gangrene, mononeuritis multiplex were the most common causes of admission related to chronic HCV infection. 71.4% of patients with positive HCV antibody had active viremia (positive PCR-RNA).

Conclusion:

Chronic HCV infection represents a leading cause of admission to the rheumatology ward, Cairo University Hospitals. Increased awareness with the problem of HCV is needed among rheumatologists dealing with Egyptian patients.

Keywords

HCV prevalence Rheumatology ward Egypt

ACKNOWLEGEMENT

I would like to express my deepest gratitude to Professor *Dr. Bassel Kamal El-Zorkany; professor of Rheumatology and Rehabilitation, Cairo University*, who has given me much of his valuable time, generous and continuous help to make this study come to reality. His wide experience, knowledge and friendly attitude were of great help in guiding me, not only through this work, but also all through my short career.

My deepest thanks to Prof. *Dr. Hala shieba; Professor of Clinical Pathology, Cairo University*, for her unlimited support, effort and guidance especially in the practical part of this work.

I also feel extremely grateful and greatly indebted to *Dr. Rasha Gheith*, *Assistant Professor of Rheumatology and Rehabilitation*, *Cairo University* for her continuous supervision, sincere guidance, and reliable advice throughout this work.

Finally, I want to thank all my collegues in our department who supported and helped me during while carring out of this study.

INTRODUCTION	1
REVIEW OF LITERATURE	3
CHAPTER I: Hepatitis C Virus Infection	3
CHARACTERISTICS OF HCV	2
EPIDEMIOLOGY	4
MODES OF TRANSMISSION:	6
CLINICAL FEATURES AND NATURAL HISTORY OF HCV	13
SCREENING FOR AND DIAGNOSTIC APPROACH TO HCV INFECTION	23
Chapter II: Extrahepatic manifestations of hepatitis C virus infect	tion 37
Mixed cryoglobulinemia:	37
Polyarteritis nodosa:	43
Arthralgia and Arthritis:	46
Hepatitis C-associated osteosclerosis:	47
Fibromyalgia (FM):	47
Sjogren's Syndrome:	48
Autoantibodies:	51
Hematologic Disorders	53
Renal disease	57
Dermatologic disease:	59
Other manifestations:	64
PATIENTS and METHODS	71
RESULTS	81
DISCUSSION	96
REFERENCES	112
SUMMARY and CONCLUSIONS	157
ARARIC SUMMARY	162

List of tables

Table 1: Demographic data of the study population 8*
Table 2: Diagnosis of 157 patients admitted to the Rheumatology and Rehabilitation department 82
Table 3: Demographic data of the 29 HCV antibody positive patients 83
Table 4: Cause of admission in the 29 HCV antibody positive patients 85
Table 5: The main laboratory parameters of the 29 HCV antibody positive patien 88
Table 6: Number and percentage of patients with normal and abnormal laborato parameters in the 29 positive patients 89
Table 7: Results of HCVRNA in 21/29 patients with positive HCV antibody 89
Table 8: Autoantibodies in patients with positive HCV antibody 90
Table 9: Classification of the 29 HCV positive patients according to the general cause of admission 90
Table 10: Number of patients with different rheumatic diseases that had positive HC antibody
Table 11: The prevalence of positive HCV antibody in different rheumatic disease admitted to the rheumatology ward 92
Table 12: Age and sex of 11 HCV patients with extra-hepatic manifestations 93
Table 13: Rheumatic manifestations of 11 patients admitted primarily due to extra hepatic manifestations of chronic HCV 94
Table 14: Results of HCVRNA in 8/11 patients with positive HCV antibody admitted primarily due to rheumatic extra-hepatic manifestations 95
Table 15: Auto-antibodies in patients with positive HCV antibody admitted primarily due to rheumatic extra-hepatic manifestations

List of figures

Figure 1: Structure of HCV	4
Figure 2: Natural History of HCV Infection	15
Figure 3: Palpable Purpura in HCV Infection	40
Figure 4: Cutaneous Lesions in Porphyria Cutanea Tarda	60
Figure5: Percentage of HCV antibody positive in patients admitted to the Rheumatology and Rehabilitation department in six months	d 84
Figure 6: Age distribution of the 29 HCV antibody positive patients	85
Figure 7: Nodular Scleritis in Anti-HCV antibody positive patient	86
Figure 8: Ptosis in Anti-HCV antibody positive patient	86
Figure 9: Digital gangrene in Anti-HCV antibody positive patient	87
Figure 10: Palpable purpura in Anti-HCV antibody positive patient	87
Figure 11: 7% of all the admitted patients were admitted primarily due to rheumatic extra- hepatic manifestations of HCV	93
Figure.12: Geographic distribution of hepatitis C infection worldwide	98

List of Abbreviations

AASLD American Association for the Study of Liver Diseases

ACPA Anti citrulline peptide antibody

ACR American College of Rheumatology

AFP Serum alpha fetoprotein

ALP Serum alkaline phosphatase

ALT Serum alanine transaminase

AMA Antimitochondrial antibodies

ANA Anti-nuclear antibody

ANCA Anti-neutrophil cytoplasmic antibody

Anti- RNP Ribonucleoprotein complex

Anti-HBc Anti-hepatitis B core antibodies

Anti-LKM-1 Anti-liver-kidney microsome antibodies

AOSD Adult onset Still's disease

APS Antiphopholipid syndrome

AST Serum aspartate transaminase
bDNA Branched-chain DNA assays

C3 Complement 3

CCP Cyclic citrullinated peptide
CT Computed tomography

ECG Electrocardiogram

EIA Enzyme immunoassay

ELISA Enzyme-linked immunosorbent assay

ENA Extractable nuclear antigen

ESR Erythrocyte sedimentation rate

EVR Early virologic response

FDA Food and drug adminstration.

FM Fibromyalgia

GGT Gamma glutamyl transferase

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HIV Human immunodeficiency virus

HRCT High resolution Computed Tomography

HTLV Human T lymphotropic virus

IFN Interferon

IGF Insulin-like growth factor
IgG, IgM, IgA Immunoglobulin G, M, A

IPF Interstitial pulmonary fibrosis

ITP Immune thrombocytopenic Purpura

IVDU Intravenous drug users

JIA Juvenile idiopathic arthritis

LP Lichen planus

MC Mixed cryoglobulinemia

MCTD Mixed connective tissue disease

MG Myasthenia gravis

MPGN Membranous proliferative glomerulonephritis

MRI Magnetic resonance imaging

NAT Nucleic acid testing

National Health and Nutrition Examination Survey

NHL Non-Hodgkin lymphoma

PAN Polyarteritis nodosa

PAT Parenteral anti-schistosomal therapy

PCR Polymerase chain reaction
PCT Porphyria cutanea tarda

PM/DM Polymyositis/dermatomyositis

PSS Progressive systemic sclerosis

PTH Parathormone

RA Rheumatoid arthritis
RF Rheumatoid factor

RIBA Recombinant immunoblot assay

RT-PCR Reverse transcriptase polymerase chain reaction

RVR Rapid virologic response

SLE Systemic lupus erythematosus

SS Sjogren's syndrome

TMA Transcription-mediated amplification

TMB Chromogen tetramethylbenzidine

UROD Enzyme uroporphyrinogen decarboxylase

WHO World Health Organization

Introduction and aim of the work

Hepatitis C virus (HCV) is a global pathogen, infecting an estimated 170 million people worldwide, and is the most common blood-borne viral infection in the United States. It has been estimated that 3.9 million Americans have been exposed to the virus, with 2.9 million believed to be chronically infected [Rustgi, 2007].

In Egypt the situation is quite worse. Egypt has the highest prevalence of hepatitis C in the world. The national prevalence rate of HCV antibody positivity has been estimated to be between 10-13% [Mohamed, 2004]. In one study, sera were obtained from 3608 blood donors at 13 governorates in or surrounding the Nile valley during 1999. Antibody to HCV (anti-HCV) was found in 317 (8.8%) of them [Tanaka et al., 2004], compared to the prevalence of antibodies to HCV (anti-HCV) in the United States which is approximately 1.6 percent according to the most recent National Health and Nutrition Examination Survey [Armstrong et al., 2006].

The hepatitis C virus (HCV) is a cause of both acute and chronic hepatitis. In addition, several extra-hepatic diseases have been associated with chronic HCV infection, and in most cases appear to be directly related to the viral infection. These include: arthralgia, arthritis, myalgia, cryoglobulinemic vasculitis, secondary Sjogren's syndrome, thyroiditis, generation of autoantibodies, renal disease, dermatologic conditions such as lichen planus and porphyria cutanea tarda [Pawlotsky et al., 1994; Gumber and Chopra, 1995; Cacoub et al., 2000; El-Serag et al., 2002] . In one series of 321 patients, at least one extra-hepatic manifestation was observed in 38 percent [Cacoub et al., 2000].

Rationale and aim of the work:

Egypt has higher rates of HCV than neighboring countries as well as other countries in the world with comparable socioeconomic conditions and hygienic standards for invasive medical, dental, or paramedical procedures. Chronic HCV infection is commonly associated with extra-hepatic manifestations; many of them are related to rheumatology practice.

Accordingly, the aim of this work is to study the prevalence of HCV among patients admitted to the rheumatology ward, Cairo University Hospitals.

Review of Literature

CHAPTER I

Hepatitis C Virus Infection

CHARACTERISTICS OF HCV

It became apparent after the discovery of the hepatitis A and B viruses in the late 1960s and early 1970s that a large proportion of cases of acute and chronic hepatitis could not be explained by either of these agents. Another viral agent was suspected, and patients infected with this suspected agent were said to have non-A, non-B hepatitis. The agent was finally identified in 1989 when the genome of the virus was cloned and the agent was designated the hepatitis C virus (HCV) [Choo el al., 1989].

The hepatitis C virus particle consists of a core of genetic material (RNA), surrounded by an icosahedral protective shell of protein, and further encased in a lipid (fatty) envelope of cellular origin. Two viral envelope glycoproteins, E1 and E2, are embedded in the lipid envelope [Op De Beeck and Dubuisson, 2003].

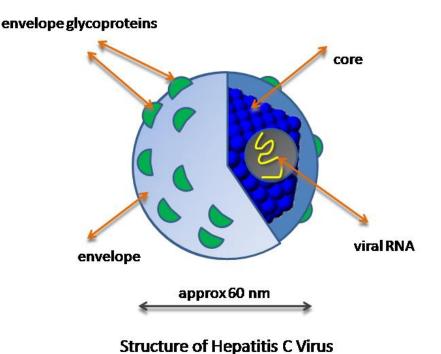


Figure 1: Structure of HCV

The hepatitis C virus is a small 40 to 60 nm virus with a lipid envelope and a single-stranded RNA viral genome comprising approximately 9500 nucleotides [Houghton et al., 1991]. It belongs to the Flaviviridae family. It has extensive genomic variability resulting in six major genotypes [Simmonds et al., 1994, Major and Feinstone, 1997, and Bartenschlager and Lohmann, 2000]. More than 50 subtypes have also been described; the most common subtypes are 1a, 1b, 2a, and 2b [Simmonds et al., 2005]. Replication of HCV is "error-prone". In addition, the evolution of genotypes has probably been influenced by several factors, including immune selection, infection patterns, replication efficiency, and population migration. Thus, there is a distinct geographic distribution of HCV genotypes [Dusheiko et al., 1994 and Lau et al., 1996]. Genotype 1 is most common (60 to 70% of isolates) in the United States and Europe [Dusheiko et al., 1994 and Lau et al., 1996]; genotypes 2 and 3 are less common in these areas,

while genotypes 4, 5, and 6 are rare: Genotype 3 is most common in India, the Far East, and Australia. Genotype 4 is most common in Africa and the Middle East and appears to be emerging more frequently in Europe among intravenous drug users and homosexuals. Possibly related to immigration to Europe from North Africa, Genotype 5 is most common in South Africa and Genotype 6 is most common in Hong Kong, Vietnam, and Australia. Although subtype 4a is the dominant Egyptian HCV strain, a survey by Ray et al., 2000, of HCV genetic diversity in the country revealed that other subtypes (provisionally named 4a, 4b, and 1g) are also present at lower prevalence.

The clinical significance of viral genotypes is not entirely clear, but they have a significant effect upon the response to interferon-based therapy. The sustained virologic response to pegylated interferon plus ribavirin ranges from about 40 to 50% with genotype 1 (including 1a and 1b) to as high as 70 to 80% with genotypes 2 and 3 [Martinot-Peignoux et al., 1995 and Davis and Lau, 1997].

EPIDEMIOLOGY

Hepatitis C virus infection occurs throughout the world and affects about 3% of the world's population [Cacoub et al.1999]. The Centers for Disease Control estimates that the number of new cases of acute hepatitis C virus (HCV) infection in the United States has fallen from approximately 230,000 per year in the 1980s to its current level of about 19,000 cases per year [Wasley et al., 2006]. The overall incidence in 2006 was estimated to be 0.3 to 100,000 [Wasley et al., 2006]. The decline relates primarily to reduction of infection in injection drug users, a probable consequence of changes in injection practices motivated by a concern for HIV risk. The number of cases of transfusion-associated acute hepatitis C decreased significantly after 1985 and has been reduced almost to zero [Alter, 1997]. Thus,