Effects of Taurine Supplementation on Biomarkers of Oxidative Stress in Insulin-Resistant Rats.

A thesis submitted for partial fulfillment of master degree in pharmaceutical science (Biochemistry)

By

Hekmat Mohamed El Magdoub

Demonstrator of Biochemistry, Faculty of Pharmacy, Misr International University.

B. Ph. Sc, Cairo University, 1999

Under the supervision of

Prof. Dr. Hala Osman El Mesallamy

Professor of Biochemistry
Head of Biochemistry Department and
Vice Dean for Community and Environmental Affairs
Faculty of Pharmacy
Ain shams University

Dr. Ebtehal El Demerdash Zaki

Associate professor of Pharmacology Acting Head of Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain shams University.

Dr. Lamiaa Nabil Hammad

Associate professor of Biochemistry Acting Head of Biochemistry Department, Faculty of Pharmacy, Misr International University

Biochemsitry Department Faculty of Pharmacy Ain Shams University 2010

Acknowledgment

First and foremost, Thanks are due to Allah.

I am much honored to be supervised by **Prof. Dr. Hala El-Mesallamy**, Head of Biochemistry Department, and Vice Dean for community and environmental affairs, Faculty of Pharmacy, Ain-Shams University, who has put the idea of the research and designed the protocol of the study. I would like to thank her for enlightening me with her thoughts, her valuable supervision, and her general encouragement. I would like to thank her for the vital assistance and motivation she has extended.

Words cannot express my deep gratitude and sincere appreciation to **Dr. Lamiaa N Hammad**, Acting Head of Biochemistry Department, Faculty of Pharmacy, Misr International University. I would like to thank her for her close follow up and tangible efforts throughout the experimental work, her step by step assistance in collecting the required samples, as well as analyzing them, and for her superb guidance during writing the manuscript.

I would like to extend my cordial appreciation to **Dr. Ebtehal El-Demerdash**, Acting Head of Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain-Shams University, for her generous help and guidance during the experimental work and data analysis, as well as her valuable participation in revising the manuscript.

I would like to convey my special thanks to Misr International University (MIU), for without its equipped research lab, animal house,

library, and financial support, I could have never been able to finish my study.

I would like to thank all MIU staff members who supported me to accomplish my goal all along the way. They offered me knowledge, persistence, encouragement, and assistance whenever needed.

Furthermore, I would like to thank US NAMRU-3, Cairo, Egypt for their cooperation, as well as kind receptiveness.

I would like to extend my gratefulness to my parents, who provided me with prayers and support at every moment of my life, to my husband who stood beside me all along the road, and to my little angel.

Last but not the least; I would like to express my heartfelt feelings towards my MIU colleagues who were willingly overloaded by much work to help me finish my research.

4-AP	4-aminophenazone.
ACAT	Acyl-CoA: cholesterol acyltransferase
ADMA	Asymmetrical dimethylarginine.
ADP	Adenosine diphosphate.
A-FLIGHT toxicities	The manifold toxicities associated with insulin resistance,
	metabolic syndrome and type 2 diabetes mellitus.
AGEs	Advanced glycation end-products.
AMP	Adenosine monophosphate.
ANG II	Angiotensin II.
ATP	Adenosine triphosphate.
AUC	Area under the curve.
BH ₄	Tetrahydrobiopterin.
bHcy	Protein bound homocysteine.
BHMT	Betaine:homocysteine methyltransferase.
BMI	Body mass index.
CAD	Coronary artery diseases.
cAMP	Cyclic adenosine monophosphate.
CDO	Cysteine dioxygenase.
cGMP	Cyclic guanosine monophosphate.
CHE	Cholesterol esterase enzyme.
CHOD	Cholesterol oxidase enzyme.
CMIA	Chemiluminescent microparticle immunoassay.
CRP	C-reactive protein.
CSAD	Cysteine sulfinic acid decarboxylase.
CVD	Cardiovascular diseases
CβS	Cystathionine β synthase.
DAG	Diacyl glycerol.
DHAP	Dihydroxyacetone phosphate
DNA	Deoxyribonucleic acid.
DTT	Dithiothreitol.
EDTA	Ethylene diamino tetraacetic acid.
ELISA	Enzyme linked immunosorbent assay.
eNO	Endothelial nitric oxide.
eNOS	Endothelial nitric oxide synthase.
ET-1	Endothelin-1.
exSOD	Extracellular superoxide dismutase.
FFA	Free fatty acids.

G-6-PDH	Glucose-6-phosphate dehydrogenase
GABA	γ-aminobutyric acid.
GI	Glycemic index.
GK	Glycerol kinase.
GLUT	Glucose transporter.
GOD	Glucose oxidase.
GPO	Glycerol-3-phosphate oxidase.
GPx	Glutathione peroxidase.
GSH	Glutathione (reduced).
GSSG	Glutathione (oxidized)
H_2O_2	Hydrogen peroxide.
HCl	Hydrochloric acid.
Нсу	Homocysteine.
Hcy-Cys	Homocysteine-Cysteine.
НсуН	Free homocysteine.
Нсу-Нсу	Homocysteine-Homocysteine.
НсуТ	Homocysteine thiolactone.
HDL	High density lipoprotein.
HDL-C	Human hepatoblastoma.
Hep G2	Human hepatoblastoma.
HFCS	High fructose corn syrups.
ННсу	Hyperhomocysteinemia.
HMG-CoA reductase	3-hydroxy-3-methylglutaryl-coenzymeA reductase.
HMP	Hexose monophosphate.
HNO ₂	Nitrous oxide.
HOC1	Hypochlorous acid.
HOMA-IR	Homeostasis model assessment of insulin resistance.
HRO ₂ •	Hydroperoxyl.
HRP	Horseradish peroxidase.
IDL	Intermediate density lipoproteins.
IL-6	Interleukin 6.
iNOS	Inducible nitric oxide synthase.
IR	Insulin resistance.
IRS	Insulin receptor substrate.
JNK	c-jun N-terminal kinase
kDa	Kilo dalton.
LCAT	Lecithin:cholesterol acyl transferase
LDL	Low density lipoprotein.
LDL-C	Low density lipoprotein cholesterol.

LDLR	Low-density lipoprotein receptor
L-NMMA	NG-monomethyl-L-arginine.
LPL	Lipoprotein lipase.
MAPK	Mitogen activated protein kinase.
MnSOD	Mitochondrial superoxide dismutase.
mRNA	Messenger ribonucleic acid.
MS	Metabolic syndrome.
MTHFR	Methylenetetrahydrofolate reductase.
NADH+H ⁺	Nicotinamide adenine dinucleotide (reduced).
NADPH+H ⁺	Nictotinamide adenine dinucleotide phosphate (reduced)
NCEP-ATP III	National Cholesterol Education Program's Adult Treatment Panel III
NEDD	N-(1-naphthyl) ethylenediamine dihydrochloride.
NF-kB	Nuclear factor kappa B.
NNMT	N-nictotinamide methyltransferase.
nNOS	Neuronal nitric oxide synthase.
NO	Nitric oxide.
NOS	Nitric oxide synthase.
NOx	Nitric oxide metabolites.
O_2 •	Superoxide.
OGTT	Oral glucose tolerance tests.
OH•	Hydroxyl.
OLETF rats	Otsuka Long-Evans Tokushima Fatty rats.
ONOO-	Peroxynitrie.
PGI ₂	Prostacyclin I ₂ .
PI3K	Phosphatidylinositol-3-kinase.
PKC	Protein kinase C.
POD	Peroxidase enzyme.
PON	Paraoxonase enzyme.
QC	Quality control.
QUICKI	Quantitative insulin-sensitivity check index.
RLU	Relative light units.
RNS	Reactive nitrogen species.
RO₂•	Peroxyl.
RONOO	Peroxynitrate.
ROS	Reactive oxygen species.
SAC	S-adenosyl cysteine.
SAH	S-adenosyl homocysteine.
SAHHase	S-adenosyl homocysteine hydrolase.

SAM	S-adenosyl methionine.
SOD	Superoxide dismutase.
SREBP-1c	Sterol regulatory element binding protein-1c.
T1DM	Type 1 diabetes mellitus.
T2DM	Type 2 diabetes mellitus.
TAC	Total antioxidant capacity.
TauT	Taurine transporter.
T-Chol	Total cholesterol.
TGs	Triglycerides.
tHcy	Total homocysteine.
TNF-α	Tumor necrosis factor alpha.
TxA_2	Thromboxane A ₂ .
UDP	Uridine diposphate.
VCl ₃	Vanadium trichloride.
VLDL-C	Very low density lipoprotein cholesterol.

Contents

Title	Page
List of Figures	i
List of Tables	iii
Publication Related to the Thesis	iv
Aim of the Work	1
Review of Literature	4
Intracellular signaling mechanism of insulin	4
Insulin resistance syndrome	6
Etiology and consequences of insulin resistance	7
Mathematical models for estimating insulin resistance	9
Fructose consumption results in insulin resistance	12
Mechanisms by which fructose can induce IR syndrome	16
The A-FLIGHT acronym and production of ROS	18
Biological forms of plasma homocysteine	24
Biosynthetic and degradative pathways of homocysteine	26
Hyperhomocysteinemia and the metabolic syndrome	32
Homocysteine, a risk marker for cardiovascular disease	35
Atherosclerosis and atheroscleropathy	36
Nitric oxide biosynthesis	38
Mechanisms of endothelial dysfunction in IR syndrome	39
Pathophysiology of endothelial dysfunction	42
Antioxidant enzymes of HDL	45
Biological functions of paraoxonase	47
Protection against IR syndrome by taurine, an amino acid with strong antioxidative properties	49
Taurine biosynthesis	50
Antioxidant effects of taurine in biological systems	53
Materials and Methods	57
A. Animals	57
Design of the experiment	58
B. Samples	60
C. Methods	61
Oral glucose tolerance test	61

Determination of serum glucose concentration	61
Determination of serum insulin concentration	
Homeostasis model assessment of insulin resistance	67
Determination of plasma homocysteine concentration	68
Determination of serum triglycerides concentration	
Determination of serum total cholesterol concentration	71
Determination of serum high density lipoprotein cholesterol concentration	73
Determination of serum low density lipoprotein cholesterol concentration	75
Determination of lipid risk factors I and II	76
Determination of serum total antioxidant capacity	77
Determination of serum paraoxonase activity	78
Determination of serum nitric oxide concentration	81
D. Statistical analysis	86
Results	87
Effect of fructose consumption and taurine supplementation on weight gain	87
Effect of fructose consumption and taurine supplementation on OGTT	89
Effect of fructose feeding and taurine supplementation on serum glucose, serum insulin and HOMA-IR	92
Effect of fructose feeding and taurine supplementation on serum	96
lipid profile	
Effect of fructose feeding and taurine supplementation on lipid risk factors I and II	99
Effect of fructose feeding and taurine supplementation on plasma Hcy concentration	101
Effect of fructose feeding and taurine supplementation on serum total antioxidant capacity	
Effect of fructose feeding and taurine supplementation on serum paraoxonase activity	
Effect of fructose feeding and taurine supplementation on serum	
nitrite/nitrate concentration.	
Correlation coefficients between some parameters investigated in the four studied groups.	
Discussion	110

Contents

Summary and Conclusion	
References	140
Appendix	182
Arabic summary	1

List of Figures

Fig. No.	Figure Title	Page
1	Schematic representation of intracellular insulin signaling.	5
2	Insulin resistance, the metabolic syndrome and cardiovascular disease risk.	17
3	Production of reactive oxygen species.	19
4	Overview of generation, antioxidant enzymatic detoxification and damaging effects of ROS.	21
5	Homocysteine forms in plasma.	25
6	Homocysteine metabolism.	27
7	Homocysteinylation of lipoproteins by HcyT.	35
8	NO synthesis from L-arginine.	38
9	Potential mechanisms by which hyperglycemia induces hyperglycemic damage.	41
10	Disruption of vascular NO signaling in IR.	43
11	Hypothetical scheme for HDL-mediated release of PON1 from cells.	46
12	Biological effects and modulation of PON1.	47
13	Biosynthesis of taurine.	51
14	Sources and physiological role of taurine.	52
15	Insulin standard curve.	67
16	Nitrite standard curve.	85
17	Effect of fructose feeding and taurine supplementation on weight gain of rats at days 0 and 35 of the study.	88
18,a	OGTT of all experimental groups at the beginning of the experiment (day zero).	89
18,b	OGTT of all experimental groups at the end of the experiment (day 35).	90
19	Effect of fructose feeding and taurine supplementation on the AUC of the OGTT throughout the 35 days of the experiment.	91
20	Effect of fructose feeding and taurine supplementation on serum glucose concentration.	94
21	Effect of fructose feeding and taurine supplementation on serum insulin concentration.	95
22	Effect of fructose feeding and taurine supplementation on HOMA-IR.	96

i

List of Figures

23	Effect of fructose feeding and taurine supplementation on serum lipid profile.	98
24	Effect of fructose feeding and taurine supplementation on lipid risk factors I and II.	101
25	Effect of fructose feeding and taurine supplementation on plasma Hcy level.	102
26	Effect of fructose feeding and taurine supplementation on serum TAC.	103
27	Effect of fructose feeding and taurine supplementation on serum PON activity.	104
28	Effect of fructose feeding and taurine supplementation on serum NOx concentration.	105
29	Correlation between HOMA-IR and serum TGs concentration in the four studied groups.	107
30	Correlation between plasma Hcy concentration and HOMA-IR in the four studied groups.	107
31	Correlation between serum PON activity and plasma Hcy concentration in the four studied groups.	108
32	Correlation between serum PON activity and serum TGs concentration in the four studied groups.	108
33	Correlation between serum TAC and serum PON activity in the four studied groups.	109

List of Tables

List of Tables

Table No.	Table Title	Page
1	Abnormalities and clinical syndromes associated with IR/compensatory hyperinsulinemia.	8
2	A-FLIGHT toxicities, the manifold toxicities associated with IR, MS and T2DM.	18
3	Antioxidant systems for inactivation of free radicals.	22
4	Effect of fructose feeding and taurine supplementation on the body weights of the rats.	88
5	Effect of fructose feeding and taurine supplementation on the AUC of the OGTT throughout the 35 days of the experiment.	90
6	Effect of fructose feeding and taurine supplementation on serum glucose concentration, serum insulin concentration, and HOMA-IR.	93
7	Effect of fructose feeding and taurine supplementation on serum lipid profile.	97
8	Effect of fructose feeding and taurine supplementation on lipid risk factors I and II.	100
9	Effect of fructose feeding and taurine supplementation on plasma Hcy, serum TAC, serum PON, and serum NOx levels.	102
10	Individual raw data of group I (Control group)	182
11	Individual raw data of group II (Taurine group)	183
12	Individual raw data of group III (Fructose fed group)	184
13	Individual raw data of group IV (Fructose fed+taurine group)	185

Aim of the Work

Rats fed a high-fructose diet develop a cluster of abnormalities including hyperinsulinemia, glucose intolerance and hypertension. In addition, prolonged fructose treatment affects lipid metabolism and causes alterations in plasma lipid profile (Nandhini et al., 2002a). Fructose fed rats form a useful experimental model of insulin resistance (IR). Moreover, fructose feeding is reported to facilitate oxidative damage and has deleterious effects both due to reduction in antioxidant defense and enhanced free radical production (Busserolles et al., 2002).

The IR observed in the fructose fed-rat model may be attributed to a low level of insulin stimulated glucose uptake and oxidation in skeletal muscles and adipose tissues due to modification in the post receptor cascade of insulin action (*Catena et al.*, 2003).

Hyperglycemia results in low density lipoprotein (LDL) being seeded with small amounts of lipid peroxides rendering it more susceptible to oxidation. Oxidative modification of LDL is implicated in the pathogenesis of many vascular diseases in fructose-induced insulin resistant animals (Kopprasch et al., 2002). High density lipoprotein (HDL) potentially limits the oxidative modification of LDL by an enzymatic mechanism. The central role of paraoxonase (PON) 1 mechanism in the antioxidative actions of HDL by hydrolyzing LDL and cell membrane associated lipid hydroperoxides is well established (Mackness and Durrington, 1995). A greater degree of severity of the metabolic syndrome (MS) is associated with a progressively worse antioxidant/oxidant balance, and lower antioxidant PON1 enzymatic capacity (Senti et al., 2003).

Taurine (2-amino ethane sulphonic acid) is a derived amino acid that is found in high concentrations in most types of animal tissues (Nandhini et al., 2002b). The benefits of taurine supplementation have been reviewed with respect to diabetes, cardiomyopathy and hypertension. Specific hypolipidemc effects include increased activity of cholesterol 7 α -hydroxylase, increased LDL receptor binding, and increased LDL turn over (Militante and Lombardini, 2004). Previous studies have shown that taurine reduces oxidative stress in liver of high fructose fed rats (Nandhini et al., 2005a).

Homocysteine (Hcy) is a derived sulfer-containing amino acid and an intermediary metabolic product derived from the demethylated essential amino acid methionine. The important role of oxidative-redox stress and hyperhomocysteinemia (HHcy) is biologically plausible because Hcy promotes oxidant injury to vascular cells through the auto-oxidation of Hcy, formation of mixed disulphides, interaction of Hcy thiolactones (HcyT), and protein homocysteinylation (*Blom*, 2000).

It has been proposed that plasma Hcy levels are elevated in patients with chronic heart failure and may represent a new risk factor or risk marker for this condition. It has also been reported that blood Hcy levels are associated with the severity of the disease (Osorio et al., 2008). The oxidative stress accompanying this condition impairs insulin signaling and action therefore leading to IR (Najib and Sanchez-Margalet, 2001), and contributes to the associated vascular risk (Oron-Herman et al., 2005a).

Previous reports show that insulin exerts desirable actions on the vasculature primarily by amplifying endothelium-dependant