

ASSESSMENT OF HYBRID PHOTOVOLTAIC ARRAY MAXIMUM POWER POINT TRACKING METHOD

By

Yasmin Adel Abdel-Sattar Ali Hagag

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power & Machines Engineering

ASSESSMENT OF HYBRID PHOTOVOLTAIC ARRAY MAXIMUM POWER POINT TRACKING METHOD

By **Yasmin Adel Abdel-Sattar Ali Hagag**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Electrical Power & Machines Engineering

Under the Supervision of

Dr. Ahmed Mohamed Ibrahim

Associate Professor Electrical power and Machine Dept. Faculty of Engineering Cairo University

ASSESSMENT OF HYBRID PHOTOVOLTAIC ARRAY MAXIMUM POWER POINT TRACKING METHOD

By Yasmin Adel Abdel-Sattar Ali Hagag

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in Electrical Power & Machines Engineering

Approved by the
Examining Committee

Associate. Prof. Dr. Ahmed Mohamed Ibrahim, Thesis Main Advisor
Prof. Dr. Essam El Din Aboul Zahap, Internal Examiner

Prof. Dr. Mostafa Abdel khalek Abu-Zeid, External Examiner

- Head of mechanical and electric organization , ministry of water resources and irrigation

Engineer's Name: Yasmin Adel Abdelsatar Ali Hagag

Date of Birth: 21/07./1982. **Nationality:** Egyptian.

E-mail: Yasmin.adel.hagag@gmail.com
Phone: 01005392642-02 24710249
Address: Nasr city – Taqa street no 19

Registration Date: 11./10/2011 **Awarding Date:**/2017 **Degree:** Master of Science

Department: Electrical Power & Machines Engineering

Supervisors:

Associate. Prof. Dr. Ahmed Mohamed Ibrahim

Examiners:

Prof. Dr. Mostafa Abdel khalek Abu-Zeid

(External examiner)

Prof. Dr. Essam El Din Aboul Zahap

(Internal examiner)

Associate. Prof. Dr. Ahmed Mohamed Ibrahim

(Thesis main advisor)

Title of Thesis:

ASSESSMENT OF HYBRID PHOTOVOLTAIC ARRAY MAXIMUM POWER POINT TRACKING METHOD

Key Words:

MPPT, PV system, Offline, Online, Hybrid methods

Summary:

The high demand for electricity and also the recent variation in the natural conditions, drag the intention about the need for another Source of energy, recently the use of solar energy has been emerging. Photovoltaic arrays have limited conversion efficiency and thus, a maximum power point tracking (MPPT) technique is an essential component in a PV system, The MPPT is the strategy which guarantees that the PV system under any climatic changes gives the most extreme accessible power.

This research adopts the most common categorization scheme of the MPPT techniques which is founded on two classifications: online and offline methods. This grouping is according to either the predefinition of operating points without system data update (offline methods) or continuous sampling of system variables, to update the PV module measurements (online methods). In these methods there is a trade-off between the simplicity, low cost from one side and accuracy from other side. Simple and low cost method can't track the maximum point accurately, other accurate tracking techniques are usually complex and higher cost is required, also these techniques need very high experienced end customer.

In order to get better method of MPPT techniques that guarantees the PV system under any climatic changes gives the most extreme available power with lower cost, a combination of both method offline and online was integrated as new hybrid method.

In this thesis an assessment of hybrid method is presented. A number of MPPT techniques have been modeled using MATLAB/Simulink program and their efficiencies were compared after simulating them under different climatic conditions, the radiation and rapid change in radiation were taken into account. The introduced hybrid method shows excellent efficiency and better performance at startup and reacts well to fast changes in climatic conditions.

Acknowledgments

My sincere appreciation and special thanks are due to Dr. Rameen Sayed AbdelTawab AbdelHady at the National Water Research Center. She has been working with me for the last five years; my first steps in the field of research were under her close supervision and technical guidance. She aided me in setting the work plan and the methodology. Her contribution was major through all the phases of the research and her support was decisive in the publication of a scientific paper related to research topic. Her useful comments and remarks lead me to finalize the thesis. Also, her experience in solving technical problems during the simulation process was of great help to me.

My faithful appreciation and special thanks are due to my supervisor, Assoc. Prof. Dr. Ahmed Mohamed Ibrahim, professor of Electrical Power and Machines Dept. Cairo University, Egypt, for giving me the honor of finishing my study under his supervision. His truthful comments encouragement are faithfully appreciated.

Also I would like to express my sincere thanks to my mother, father, husband, daughters and sisters, for their patience and continuous encouragement in study. Special thanks to my friends Ghada Said and Nashwa Ahmed for their tremendous support.

Last but not least, no words of thanks and feelings are sufficient.

Table of Contents

ACKNOWL	EDGMENTS	i
TABLE OF (CONTENTS	ii
LIST OF TA		iv
LIST OF FIG		V
NOMENCLA		vii
I ICT OF DIT	BLICATION	i
ABSTRACT	BLICATION	X xi
	: INTRODUCTION	1
1.1	Problem definition	_
1.2	Research objective	
1.3	· ·	
	Research impact	
1.4	Organization of thesis	
	: THEORY OF I-V CHARACTERIZATION	
2.1	Introduction	
2.2	Theory of I-V characterization	
2.2.1	Short circuit current	5
2.2.2	(ISC)	_
2.2.2	Open circuit voltage (VOC)	
2.2.3	Max power (PMAX), current at PMAX (IMP), voltage at PMAX (VMP	
2.2.4	Effect of temperature and solar radiation	
2.2.4.1	Temperature measurement	6
2242	considerations	_
2.2.4.2	Radiation measurement	6
2.2.5	considerations	_
2.2.5	Fill factor (FF)	
2.2.6	Efficiency ()	
2.2.7	Influence of series resistance (RS) and shunt resistance (RSH)	
CHAPTER 3		12
CONVERTE		4.2
3.1	How maximum power point is achieved	
3.2	DC-DC converters.	
3.2.1	The step-up converter (Boost converter)	
3.2.2	Step down converter (buck converter)	
3.2.3	Step down-step up converter (buck-boost converter)	
3.3	DC-DC converter for PV applications	
CHAPTER 4		22
	ON	
4.1	Applications of maximum power point trackers	
4.1.1	Battery	22
4.4.5	charging	•
4.1.2	Grid connected and standalone PV systems	
4.1.3	Water pumping applications.	
4.2	The major features of MPPT techniques	
4.2.1	Implementation	. 23

4.2.2	Sensors	23
4.2.3	Multiple local maxima	24
4.2.4	Costs	24
4.2.5	Applications	24
CHAPTER 5:C	ATEGORIZATION SCHEME OF THE MPPT	25
TECHNIQUES.	•••••	
5.1	System overview	25
5.2	The MPPT control.	26
5.2.1	Offline methods	27
5.2.1.1	Open circuit voltage method (OCV)	27
5.2.1.2	Short circuit current method (SCC)	29
5.2.1.3	Artificial intelligence (AI)	31
5.2.1.3.1	Artificial neural networks method (ANN)	31
5.2.1.3.2	Fuzzy logic method (FL)	33
5.2.2	Online methods	35
5.2.2.1	Perturbation and observation method (P&O)	36
5.2.2.2	Incremental conductance method (IncCond)	38
5.2.2.3	Extremum seeking control method (ESC)	41
5.2.3	Hybrid method	42
CHAPTER 6: IN	NTRODUCED HYBRID METHOD RESULTS ASSESSMENT	45
AND COMPAR	ISON WITH ONLINE/OFFLINE METHODS	
CHAPTER 7:		57
CONCLUTION		
7.1	Future work.	57
REFERENCES.		58
••••		

iii

List of Tables

TABLE 5.1	Fuzzy rule base Table	3
TABLE 6.1	Output power and efficiency of MPPT proposed methods	54
TABLE 6.1.A	R=1000 w/m2, $Pmax = 30500 watt$	54
TABLE 6.1.B	$R=750 \text{ w/m}^2$, $Pmax = 22460 \text{ watt}$	55
TABLE 6.1.C	R = 250 w/m2, $Pmax = 6847 watt$	55
TABLE 6.2	Rabidly change in radiation.	56

List of Figures

Fig. 1.1	Basic component that formatting the PVG	1
Fig. 2.1	Single diode equivalent circuit of a solar cell	4
Fig. 2.2	Maximum power for an I-V Sweeping	5
Fig. 2.3	Typical IV / PV characteristic of a solar cell at 1 kW/m2 & different temp.	6
Fig. 2.4	IV characteristic of a solar cell at 75°C and different illumination levels	6
Fig. 2.5	PV characteristic of a solar cell at 75°C and different illumination levels	7
Fig. 2.6	Getting the fill factor from the I-V sweep	7
Fig. 2.7	Effect of diverging R _S & R _{SH} from Ideality	8
Fig. 2.8	Obtaining resistances from the I-V bend	9
Fig. 3.1	Block diagram of a typical MPPT system	10
Fig. 3.2	DC/DC converter helps in tracking the peak power point.	11
Fig. 3.3	Boost converter under continuous conduction mode of current	13
Fig. 3.4	Output voltage dependency on duty cycle D for the boost converter	14
Fig. 3.5	Simulated system diagram of boost converter	14
Fig. 3.6	Buck converter under continuous conduction mode of current.	16
Fig. 3.7	Output voltage dependency on duty cycle D for the buck converter.	17
Fig. 3.8	Simulated system diagram of buck converter	17
Fig. 3.9	Buck-boost converter under continuous conduction mode of current	19
Fig. 3.10	Output voltage dependency on duty cycle D for the buck-boost converter	20
Fig. 3.11	Simulated system diagram of buck-boost converter	20
Fig. 4.1	Battery charging application of MPPT	21
Fig. 4.2	Grid connected application using MPPT	21
Fig. 4.3	Pumping application of the MPPT.	22
Fig. 5.1	Sun power SPR-305-WHT; 5 series modules; 20 parallel strings	24
Fig. 5.2	Simulated system diagram of PV module	25
Fig. 5.3	System block diagram	25
Fig. 5.4	Optimum voltage versus open voltage	26

Fig. 5.5	Flowchart of open-circuit voltage	27
Fig. 5.6	Simulated system diagram of OCV method	28
Fig. 5.7	Simulated system diagram of the OCV method's subsystem	28
Fig. 5.8	Flowchart of short-circuit current	29
Fig. 5.9	Optimum current versus short current	29
Fig. 5.10	Simulated system diagram of SCC method	29
Fig. 5.11	Simulated system diagram of the SCC method's subsystem	30
Fig. 5.12	Basic neuron.	31
Fig. 5.13	Flow diagram of fuzzy inference system	32
Fig. 5.14	Membership function for inputs and output of fuzzy logic controller	33
Fig. 5.15	Sign of P at different position on the power- voltage characteristic of a PV cell	35
Fig. 5.16	Flowchart of P&O technique	36
Fig. 5.17	the simulated system diagram of P&O method	37
Fig. 5.18	The MATLB function block of P&O method	37
Fig. 5.19	Characteristic PV array power curve. variation of the dP/dV	38
Fig. 5.20	IncCond algorithm.	39
Fig. 5.21	Simulated system diagram of IncCond method	40
Fig. 5.22	Simulated system diagram of the IncCond method's subsystem	40
Fig. 5.23	Simulated system diagram of the IncCond method's MPPT subsystem	40
Fig. 5.24	MPPT controller scheme for the PV system by ESC	41
Fig. 5.25	Illustration of the strategy of hybrid	43
Fig. 5.26	Simulated system diagram of hybrid method	43
Fig. 6.1	Output generated power from PV system without MPPT control at different radiation levels	44
Fig. 6.2	Output generated power from PV system with OCV MPPT control at various radiation levels	45
Fig. 6.3	Output generated power from PV system with SCC MPPT control at various radiation levels	46
Fig. 6.4	Output generated power from PV system with P&O MPPT control at various radiation levels	47
Fig. 6.5	Output generated power from PV system with IncCond MPPT control at various radiation levels	48
Fig. 6.6	Output generated power from PV system with Hybrid MPPT	49

Fig. 6.7	Rapid change in radiation level for which the methods have been tested	50
Fig. 6.8	Output generated power from PV system with hybrid MPPT control at rapid change in radiation level	50
Fig. 6.9	Comparison between the effect of rapid change in radiation level on the hybrid method and the OCV method	51
Fig. 6.10	Comparison between the effect of rapid change in radiation level on the hybrid method and the SCC method	51
Fig. 6.11	Comparison between the effect of rapid change in radiation level on the hybrid method and the P&O method	52
Fig. 6.12	Comparison between the effect of rapid change in radiation level on the hybrid method and the IncCond method	53

Nomenclature

AC Alternative Current (A)
AI Artificial Intelligence
ANN Artificial Neural Method
C_L Converter capacitor (F)

D Duty cycle

DC Direct Current (A)

V. Band gap energy of the semiconductor Relative tracking error in percentage ESC Extremum seeking control method

FF Fill factor

FL Fuzzy logic method f Frequency (HZ)

I Current (A)

 I_d Diode current (A) I_L Photo-light current (A) I_{max} Maximum Current (A)

IncCond Incremental conductance method

 I_O Saturation current (A) I_{PH} Photo current (A) I_{ref} Reference current (A) I_{SC} Short circuit current (A)

 I_{Sh} Shunt current (A)

K Boltzmann's const. $(1.4*10^{-23})$

K1,K2 Constant

L Converter Inductance (H)
MPP Maximum Power Point

MPPT Maximum Power Point Tracking

Efficiency

max Max. efficiency NB Negative big

 N_S Number of PV cells connected in series N_P Number of PV cells connected in parallel

N Diode ideality factor

OCV Open Circuit voltage method *P&O* Perturb and observe method

PV Photovoltaic

PVG Photovoltaic generator

P Power (W)

 $\begin{array}{ll} PWM & \text{Pulse Width Modulation} \\ P_{\text{max}} & \text{Maximum power (W)} \end{array}$

 P_{MPP} Power at the Maximum Power Point (W)

 $\begin{array}{ll} P_{in} & \quad & Input \ power \ (W) \\ P_{out} & \quad & Output \ power \ (W) \\ P_{T} & \quad & Theoretical \ power \ (W) \end{array}$

PS Positive small PB Positive big

PVG Photo voltaic generator q Electron charge(1.6 *10⁻¹⁹)

RCC Ripple correction control method

 R_i Input resistance (ohm) R_o Output resistance (ohm) R_P Parallel resistance (ohm) R_S Series resistance (ohm)

SCC Short circuit current method

 S_i Silicon

R_{Sh} Shunt resistance (ohm) STC Standard test conditions

S The level of the photovoltaic irradiation (Watt/m²)

T Absolute temp. (K) t Simulation time (sec)

 t_{off} Time when chopper is open (sec) t_{on} Time when chopper is closed (sec)

 V_{OC} Open circuit voltage (V)

V Voltage (V)

 V_L Inductor voltage (V) V_r Thermal voltage (V)

 V_{MPP} Voltage at maximum power point (V)

 V_{S} Source voltage (V) V_{max} Maximum voltage (V) V_{ref} Reference voltage (V)

ZE Zero

List of publication

Assessment of a proposed hybrid photovoltaic array maximum power point tracking method Yasmin Adel ^{a,b}, Rameen Abdelhady ^a, Ahmed M. Ibrahim ^b

a: National Research Center, Ministry of Water Resources and Irrigation, Egypt

b: Electrical Power and Machines Department, Cairo University, Egypt

Science Direct magazine

30 July 2016; received in revised form 14 October 2016; accepted 19 October 2016Available online 5 December 2016

Abstract

Photovoltaic arrays have limited conversion efficiency and thus, a maximum power point tracking technique is an essential component in a PV system in pursuance of harvesting maximum power. Solar arrays exhibit nonlinear voltage-current characteristics that depend on solar radiations and temperatures. This makes the maximum power point tracking (MPPT) require prior prediction of the mentioned point in spite of the undeniable changes in the environment, for instance temperature and radiation. In this thesis an introduction and assessment of the different techniques of MPPT applied is presented. This research adopts the most common categorization scheme of the MPPT techniques which is founded on three classifications: online, offline and hybrid methods. This grouping is according to either the predefinition of operating points without system data update (offline methods) or continuous sampling of system variables, to update the PV module measurements (online methods). Whereas the introduced hybrid method is a combination of both.

Number of techniques from each class were simulated on a Sun Power SPR-305-WHT, which consists of 20 parallel strings and 5 series-connected solar modules per string, in MATLAB/Simulink environment so as to evaluate and compare the techniques performance. MATLAB/Simulink is selected, due to its reusability, extendibility, and flexibility in electrical power systems evaluation and analysis. Moreover, the hybrid method was simulated in two successive steps without preassumption of the output of the offline method. The results demonstrated the relevance of the hybrid method when applied to a photovoltaic system due to its good performance, fast response and less fluctuation, when subjected to sudden climatic change