

Effect of Perinatal Asphyxia on Thyroid Stimulating Hormone and Thyroid Hormones and Their Relation to Cranial Ultrasonographic Findings

Thesis
Submitted for Fulfillment of Ph.D. in Childhood Studies
Child Health and Nutrition - Medical Studies Department

By Nadia Salah EL-Din Khalifa (M.B.B.Ch), M.Sc. Pediatrics

Supervised By

Prof. Mohamed Fathalla Moustafa

Professor of Pediatrics Faculty of Medicine-Ain Shams University

Prof. Rehab Abdel Kader Mahmoud

Professor of Pediatrics Institute of Post Graduate Childhood Studies - Ain Shams University

Prof. Randa Kamal Abdel Raouf

Professor of Pediatrics Institute of Post Graduate Childhood Studies - Ain Shams University

Prof. Karima Moustafa Maher

Professor of Radiodiagnoses
Faculty of Medicine - Ain Shams Universality

Acknowledgment

I would like to express my sincere gratitude and appreciation to Prof. Dr Mohamed Fathalla Professor of Pediatrics Ain Shams University for his sincere effort and valuable remarks throughout the preparation of this work.

I am deeply grateful and indebted to Prof. Dr Rehab Abd el kader Mahmoud Professor of Pediatrics department of medical studies institute of post graduate childhood studies Ain Shams University for her unlimited support, keen supervision and continuous guidance and which have contributed a lot to the delivery of the work.

No words can describe the enormous efforts and generous help of Prof Dr Randa Kamal Abdel Raouf Professor of Pediatrics department of medical studies institute of post graduate childhood studies Ain Shams University for her guidance and sincere efforts and continuous encouragement made achievement of this work possible.

Many thanks and appreciation to Prof Dr Karima Mustafa Maher Professor of fRadiodiagnosis Ain Shams University for her efforts and constant support throughout the preparation of this work.

DEDICATION

TO

MY Mother, for all support, kindness and unlimited care

she gave me. From her; I understood the meaning of persistence.

TO

My sweetest heart Randa and my beloved

Tarek; for being so tolerant. To them I

dedicate my whole life wishing them a bright
future.

Contents

	Page
Abstract	1
Abbreviations	III
List of tables	V
List of Figures	VIII
Introduction	1
Aim of work	3
Review of literature	4
- Perinatal asphyxia	4
- Thyroid system	52
- Effects of perinatal asphyxia on thyroid gland and other systems	69
Patients and Methods	79
Results	87
Discussion	115
Summary and conclusion	125
Recommendations	128
References	129
Arabic Summary	

Abstract

Aim:

The aim of this study is to compare serum concentrations of thyroid hormone TT3, FT4 and TSH found in the umbilical cord blood of term newborns with and without asphyxia and those found in their blood collected between 18-24 h after birth. A further aim was to find the association between severity of hypoxic –ischemic encephalopathy and altered thyroid hormones and TSH levels, another aim was to find the relationship between abnormal cranial ultrasounds and altered thyroid hormones.

Design: Case control study

Patients and methods:

The cases comprised 30 term newborns (Apgar score </= 3, </= 6 at the first and five minutes after birth, umbilical cord blood pH<7.2) who required bag and mask ventilation for at least one minute immediately after birth.

The controls comprised 30 term newborns (Apgar score >6,>/= 8 at the first and five minutes after birth, umbilical cord blood pH> 7.2) cord blood and blood samples were collected after birth and 18-24h after birth for analysis of TT3, FT4, TSH by radioimmunoassay.

Results:

There were decreases of TSH, TT3, and FT4 of asphyxiated group at 18-24 h after birth compared to control group. In addition asphyxiated newborns with moderate and severe hypoxic ischemic encephalopathy presented significant lower levels of TSH, FT4 and TT3 than mild cases of hypoxic ischemic encephalopathy .Cases showing changes in cranial ultrasound altered lower levels of TSH, FT4 and TT3 than cases with normal cranial ultrasound.

Conclusions:

Our data suggests that lower FT4, TT3 are secondary to lower TSH levels in asphyxiated newborns and there is a relationship between lower of thyroid hormones and abnormal cranial ultrasound.

Keywords:

Asphyxia, hypothyroidism, thyroid hormones, thyrotropin.

List of Abbreviations

ACTH Adrenocorticotropic Hormone
AAP American Academy of Pediatrics
ACOG American College of Gynecology

ATP Adenosine triphosphate

B P Blood Pressure CB Cord blood

CBF Cerebral blood flow CK Creatinine Kinase

CK-BB Creatinine Kinase brain bound

CNS Central nervous system

Co cl2 Cobalt chloride CP Cerebral palsy

CT Computed Tomography

CTnT Cardiac Tropoin T

CVP Central Venous Pressure

D1 Type I lodothyronine deiodinase
 D2 Type II lodothyronine deiodinase
 D3 Type III lodothyronine deiodinase

DIC Disseminated Intravascular Coagulation

DFO Desferroixamine
DV Diastolic Volume
ECG Electrocardiogram
EEG Electroencephalogram
FT4 Free Tetra-iodothyronine

GIT Gastrointestinal tract

HIE Hypoxic Ischemic encephalopathy

HCO3 Bicarbonate Hge Hemorrhage

HIF Hypoxic inducible Factor

HR Heart Rate

IQ Intelligent Quient

IL Interleukin 6

IVH Intraventricular Hemorrhage

LDH Lactate Dehydrogenase

MRI Magnetic Resonance Imaging

MRS Magnetic Resonance Spectroscopy

MR Mental Retardation NAA N-acetyle aspartate

NEC Necrotizing Enterocolitis NSE Neuro-specific enolase

O2 Oxygen

PA Perinatal asphyxia

PO2 Partial Oxygen Pressure

PCO2 Partial Carbon dioxide Pressure PET Position Emisson Tomography

PT Prothrombin Time

PTT Partial Thromboplastin Time PVT Periventricular Leukomalacia

RI Resistive index

rT3 Reverse triiodothyronine

SIADH Syndrome of Inappropriate Antiduiretic Hormone

secretion

SPECT Single photon Emission Tomography

S.V Systolic Volume

TBG Thyroid Binding Globin

Tg Thyroglobin

T3 Triiodothyronine

TT3 Total Triiodothyronine T 4 Tetraiodothyronine

TSH Thyroid Stimulating Hormone

Wt weight

UA/Cr Uric acid/Creatinine US Ultrasonography

VLBW Very low birth weight

List of Tables

Table no	Subject	<u>Page</u>
Table (1)	Essential criteria of P A	. 6
Table (2)	Pattern of HI brain damage in the fetus	
And neona	ate	16
Table (3)	Major means of anti partum assessment	
of the hum	an fetus	. 22
Table (4)	Intra partum assessment of the fetus	23
Table (5)	Fetal heart patterns- major causes and	
usual signif	ficance	24
Table (6)	Type of acedemia	27
Table (7)	Normal blood gas value in term newborn	
at birth		28
Table (8)	Apgar score	28
Table (9)	Factors affecting Apgar score	. 30
Table (10)	Multiple systems affected of PA	. 31
Table (11)	Stages of hypoxic encephalopathy	34
Table (12)	EGG patterns and topography of neonatal HI	
brain injury	y	. 39
Table (13)	Prognosis of HIE	. 51
Table (14)	TSH and T4 concentrations in neonates	68
Table (15)	Risk of death of CP in infants with Apgar score	
0-3 at vary	ring times from birth	72
Table (16)	Sex distribution in studied cases and control	89
Table (17)	Comparison between cases and control as	
regard the	mean birth wt	90
Table (18)	Comparison between cases and controls as	
regard ges	tational age	91

Table (19)	Mode of delivery in cases and controls	92
Table (20)	Comparison between studied cases an	
controls as	regard Apgar score at 1 min	93
Table (21)	Comparison between cases and controls as	
regard Apg	ar score at 5 min	94
Table (22)	Comparison between cases and controls as	
regard bloo	od gases at birth	95
Table (23)	Comparison between studied cases and control a	S
regard bloc	od gases at 24 hr	96
Table (24)	Correlation between studied pH at birth and 24,	
and Apgar	at 1 and 5 min among cases	97
Table (25)	Frequency of organ involvement among studied	
cases		97
Table (26)	Neurological manifestations among studied	
cases		98
Table (27)	Comparison between group B and control group	
as regard T	H at birth	99
Table (28)	Comparison between group B and control as	
regard TH	at 18h -24h	100
Table (29)	Comparison between TH at 18-24 h of group A	
and group A	A and control group at 24 h as regard TH	102
Table (30)	Comparison between cases at birth and cases at	
18-24h as i	regard TH	103
Table (31) (Comparison between controls at birth and	
controls at	18-24 h as regard TH	104
Table (32)	Comparison between group A and group B	
at birth as r	regard TH	106

Table (33)	Comparison between group A and group B	
at 18-24h	as regard TH	107
Table (34)	Cranial ultrasonographic findings in cases	109
Table (35)	Comparison between cases with normal	
sonar and o	cases with abnormal sonar as regard TH	
at 1	8-24h	111
Table (36)	Correlations between fT4 at 18-24 h in cases	
and differe	nt parameters	112
Table (37)	Correlations between TT3 at 18-24 h in cases	
and differe	nt parameters	113
Table (38)	Correlations between TSH at 18-24 h in cases	
and differe	ent parameters	114

List OF Figures

FIG INO	SUDJECT	<u>Page</u>
Figure (1)	Major relationship between PA and cerebral	J
blood flow		14
Figure (2)	Patterns of hypoxic ischemic brain damage	15
Figure (3)	Coronal US scan germinal matrix grade 1hge	17
Figure (4)	Cystic PVL coronal cranial ultrasound	21
Figure (5)	Cystic PVL sagital cranial ultrasound	21
Figure (6)	Axial T1 weighted MR image	45
Figure (7)	Floor of pharynx	51
Figure (8)	Histology of thyroid	52
Figure (9)	Anatomy of thyroid	53
Figure (10)	Synthesis of TH and sex distribution of cases and control.	55
Figure (11)	New Ballard SCORE	80
Figure (12)	Comparison between cases and control as regard sex	
distribution	1	84
Figure (13)	Comparison between cases and control (wt in kg)	85
Figure (14)	Comparison between cases and controls as regard the	
mean gesta	ntional age	86.
Figure (15)	Mode of delivery in cases and controls	87
Figure (16)	Comparison between cases and controls as regard	
the mean A	Apgar score at 1 min	88
Figure (17)	Comparison between cases and controls as regard	
the mean A	Apgar score at 5 min	89
Figure (18)	Comparison between cases and controls as regard	
blood gase	s at birth	90
Figure (19)	Comparison between cases and controls as regard	
•	s at 18-24 hr after birth	91
• • •	Comparison between group B and controls group as	
regard TT3	at birth	94

Figure (21) Comparison between B and control group as regard TSH and FT4 at birth95
Figure (22) Comparison between TT3 of group B and control group at 18-24 hr96
Figure (23) Comparison between TSH and FT4 of group B and control at 18-24 h96.
Figure (24) Comparison between TT3 at 18-24 h of group A and control
Figure (25) Comparison between TSH and FT4 at 18-24 h of group A and control group
Figure (26) Comparison between all cases at birth, 18-24 h and control at birth ,18-24 h as regard TT3
Figure (27) Comparison between all cases at birth ,18-24 h and control at birth ,18-24 h as regard FT3 100
Figure (28) Comparison between all cases at birth ,18-24 h and control at birth ,18-24 h as regard TSH
Figure (29) Comparison between grade I and grade II, III as regard TT3 at birth101
Figure (30) Comparison between grade I and grade II, III as regard TSH at birth FT4102
Figure (31) Comparison between grade I and grade II, III as regard TT3 at 18-24 h103
Figure (32) Comparison between grade I and grade II, III as regard TSH and FT4 at 18-24 h after birth
Figure (33) cranial ultrasonographic findings in studied case

Introduction

Perinatal asphyxia is a relative common life threatening condition and the most important cause of neurological morbidity and mortality in preterm and full term neonates (Yasin, et al, 2006).

Despite major advances in monitoring technology and knowledge of fetal and neonatal pathology, perinatal asphyxia or more appropriate hypoxic ischemic encephalopathy remains a serious condition that causes significant mortality and long term morbidity (Santina et al, 2009).

During birth, asphyxia occurs when the infant suffers a condition of oxygen deficiency and reduced blood supply. In serious causes of asphyxia, the infant can develop symptoms of brain damage shortly following birth (HIE). In moderate and severe asphyxia lack of oxygen can cause serious damage to brain and other organs (Ewe et al, 2009).

Perinatal asphyxia also triggers a rapid increase in the serum hormones such as catecholamine, glucocorticords A.C.T.H, beta endorphins, rennin (Nylen and Muller, 2004) it also causes reduction of insulin (Xu et al, 2003).

Little is known about the effect of PA on thyroid hormones despite its important. Thyroid hormones play an important role on the synthesis of mitochondrial enzymes and structural elements in addition it stimulates thermogenesis, water and ion transportation, It also potentiates the action of catecholamine and stimulates growth and development of various tissues including the brain and skeleton (Brown, 2009).

The thyroid hormones increase oxygen consumption, stimulate protein synthesis and affect carbohydrate, lipid, and vitamin metabolism (Stephen et al, 2008).