

ROLE OF ADVANCED MRI TECHNIQUES IN EVALUATING THE RESPONSE OF BREAST CANCER TO NEOADJUVANT CHEMOTHERAPY

Essay

Submitted for partial fulfillment of Master Degree in *Radiodiagnosis*

By

Aya Hassan Khallil

M.B., B.Ch. Faculty of Medicine – Ain Shams University

Supervised by

PROF. DR.

EMAN AHMED SHAWKY GENEIDI

Assistant Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University

DR.

RANIA MOHAMMED REFAAT ABDELHAMID

Lecturer of Radiodiagnosis
Faculty of Medicine- Ain Shams University

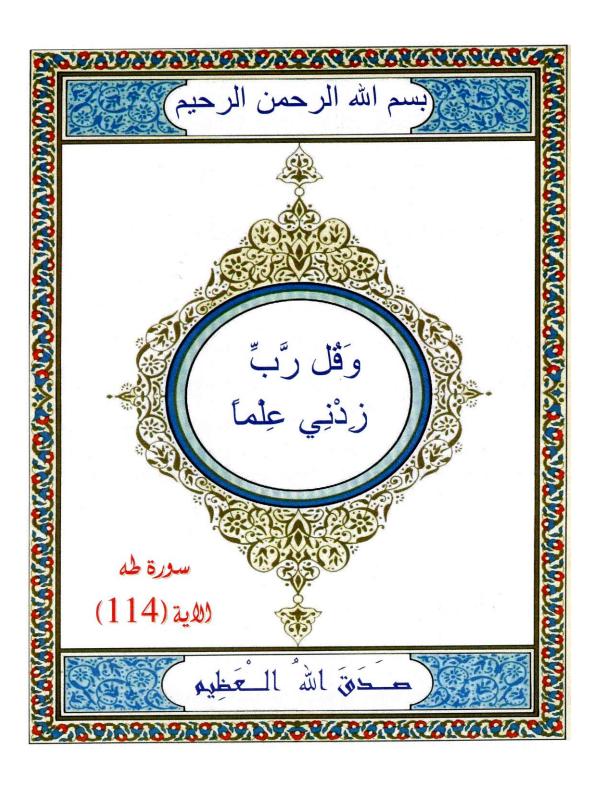
Faculty of Medicine Ain Shams University 2013

دور تقنيات تصوير الرنين المغناطيسي الحديثة في تقييم استجابة سرطان الثدي للعلاج الكيميائي الإستباقي

رسالة تمهيداً للحصول علي درجة الماجستير في الأشعة التشخيصية

مقدمة من طبيبة/ آية حسن خليل بكالوريوس الطب والجراحة العامة كلية الطب – جامعة عين شمس

تحت إشراف


أ.د/ إيمان أحمد شوقي جنيدي

أستاذ مساعد الأشعة التشخيصية كلية الطب جامعة عين شمس

د/ رانيا محمد رفعت عبد الحميد

مدرس الأشعة التشخيصية كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس 2013

First of all, I thank Allah who gave me the power to finish this work.

I would like to express my deepest gratitude and cardinal appreciation:

To Prof. Dr. Eman Ahmed Shawky Geneid: Assistant professor of radio diagnosis, Faculty of Medicine, Ain Shams University, for her kind Guidance and supervision.

Thanks to Dr. Rania Mohammed Refaat AbdelHamid lecturer of radio-diagnosis, Faculty of Medicine, Ain Shams University, for her supervision and participation in this work.

Finally I am thankful to my family who support me throughout the work.

Apa Hassan

LIST OF CONTENTS

Title	Page NO.
List of Abbreviations	ii
List of Tables	iv
List of Figures	v
Introduction and aim of the work	1
Chapter 1: Gross & MRI Anatomy of female breast	4
Chapter 2: Pathology of cancer breast	28
Chapter 3: Technique of advanced MRI imaging of the breast	47
Chapter 4: Manifestations of the response of breast cancer to neoadjuvant chemotherapy	
using advanced MRI techniques	
Summary and conclusion	105
References	108
Arabic summary	

LIST OF ABBREVIATIONS

2D Two –dimensional3D Three-dimensional

ACR American College of Radiology

ADC Apparent diffusion coefficient

AIF Arterial Input Function

BI-RADS Breast Imaging Reporting and Data System

CAD Computer Aided Detection

DCE-MRI Dynamic Contrast Enhanced- MRI

DCIS Ductal carcinoma in situ

DTPA Diethylene-triamine-penta acetic acid

DW-MRI Diffusion Weighted- MRI

ERT Estrogen replacement therapy

FID Free induction decay

FOV Field of vision

GRE Gradient

IDC Invasive Ductal Carcinoma

ILC Invasive Lobular Carcinoma

LCIS Lobular carcinoma in situ

MD Mean diffusity

MIP Maximum intensity projection

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

MRS MR spectroscopy

MVD Microvessel density

NAC Neoadjuvant chemotherapy

NCI National Cancer Institute

pCR Pathological complete response

PR Partial response

PRESS Point-resolved spatially localized spectroscopy

PVR Percentage of tumour volume reduction

Ratio-in Inflow slope ratio

Ratio-out Washout slope ratio

RECIST Response Evaluation Criteria in Solid Tumors

ROI Region of interest

SI-Time Signal intensity- time curve

Slope C Inflow slope at the cold spot

Slope H Inflow slope at the hot spot

Slope in Inflow slope

SNR Signal to noise ratio

STEAM Stimulated echo acquisition mode

STIR Short TI Inversion Recovery

SVS Single voxel spectroscopy

TDLU Terminal duct lobular unit

TE Time of echo

TNM Tumour, nodes, metastases

TR Time of recovery

Washout C Washout slope at the cold spot

Washout H Washout slope at the hot spot

LIST OF TABLES

Table		Page
no.		no.
1	Non invasive and invasive categories of breast carcinoma	31
2	TNM Stage Grouping for Breast Cancer	40
3	BIRADS Scores	42
4	Prerequisites for Maximizing the Sensitivity and Specificity of Contrast-enhanced Breast MR Imaging	59
5	Parameters for single-shot echoplanar diffusion weighted imaging at 1.5 T with a dedicated 8-channel breast coil	67
6	Calculation methods for magnetic resonance enhancement patterns	84
7	Signal Intensity and ADC Value for Various Pathologic Conditions of the Breast	93

LIST OF FIGURES

Fig. no.		Page no.
1	Sagittal anatomy of the breast	4
2	Axillary tail of breast	5
3	Anatomical structures of the breast and underlying chest wall	6
4	Glandular breast tissue	7
5	The normal appearance of breast areola	8
6	Internal and lateral thoracic arteries	9
7	Intrcostal arteries	10
8	Thoracoacromial atery	11
9	Superior thoracic artery	11
10	Arteries and veins of the breast	13
11	Internal and lateral thoracic veins	13
12	Lymphatic drainage of the breast	15
13	Venous drainage of the breast and its relationship to the lymphatics	16
14	Nerve supply of the breast	17
15	T1-weighted, fat-saturated, gadolinium-enhanced	18
16	Breast MR T2-weighted image	19
17	Postcontrast T1 image demonstrating the normal appearance of skin in MRI	20
18	Unenhanced T1 weighted image	20
19	T2 weighted image	21
20	Breast enhancement during menstrual cycle	22
21	T1 post contrast MRI image in post menopausal female with predominantly fatty tissue	23

Fig. no.		Page no.
22	Postmenopausal patient on hormones for 5 years showing areas of mass-like enhancement	24
23	Contrast enhanced MRI showing variable degrees of nipple enhancement depending on blood supply	25
24	A, Lateral thoracic artery and branches. B, Internal mammary artery anterior to the heart	26
25	Normal axillary lymph node on T1 W MRI	26
26	3D substraction MIP MRI image showing the axillary lymph nodes	27
27	Typical breast coil	51
28	(a) Axial contrast-enhanced T1-weighted MR image showing a resultant cardiac motion—related (b) Axial T1-weighted image acquired in another patient with the left-right direction (arrows) provideing better depiction of the breasts	53
29	Time intensity curve	
30	Fat suppression makes enhancing lesions easier to appreciate	
31	Effect of section thickness on tissue visibility and image quality	57
32	MR scanning of a patient in prone position	58
33	(A) Transaxial sagittal T2W SE images without fat- saturation showing Chemical shift artifacts	61
34	Motion ghosting of fat outside and inside the breast	62
35	Artifacts due to magnetic field inhomogenecity generated by metallic surgical clips placed during a previous lumpectomy	63
36	Metallic artifact in a woman who had undergone prior lumpectomy	63

Fig. no.		Page no.
37	Wraparound artifact	64
38	Restricted diffusion: high cellularity and intact cell membranes	66
39	Free diffusion: low cellularity and defective cell membranes	66
40	Diffusion-weighted images, the signal intensity of normal breast parenchyma decreases with increasing <i>b</i> value	69
41	MRS of invasive duct carcinoma	75
42	MRS of invasive duct carcinoma	76
43	Signal intensity-time curve	81
44	Pixel-by-pixel colour maps representing values for K trans	82
45	MRI scan picture of breast cancer (arrow). (a) Before; (b) After neoadjuvant chemotherapy (concentric shrinkage pattern)	87
46	MRI scan picture of breast cancer (arrow). (a) Before; (b) After neoadjuvant chemotherapy (dendritic shrinkage pattern)	87
47	Images show changes in transfer constant (K trans) in a patient whom is complete responder to neoadjuvant chemotherapy	89
48	Images show changes in volume leakage (Ve) in patient non responder to neoadjuvant chemotherapy	90
49	DWI of IDC after neoadjuvant chemotherapy	94
50	MD map of responder patient	96
51	MD map of non responder patient	96
52	Different pathological tissue types have different MRS characteristics.	99

Fig. no.		Page no.
53	MRS of IDC	101
54	Monitoring of Neoadjuvant Chemotherapy by MRSpectroscopy	103
55	MRS of residual invasive cancer after completing NAC	104

INTRODUCTION

Treast cancer constituted 22% of all cancers in women (Kharboush et al., 2011). In Egypt, breast cancer is the most frequently occurring cancer among women which represents 18.9% of the total cancer cases among female (Salem et al., 2010).

Diagnostic imaging has proven to be a beneficial tool in the screening, diagnosis and prognosis of breast cancer. Most cancers are found early with breast screening methods such as mammography (*Berg et al., 2012*). Although mammography is considered the most effective screening and diagnostic tool for early detection of breast cancer but many cases could be missed because the dense tissue interferes with identification of tumors (*Pisano et al., 2005*).

In the past decade breast cancer screening programs have helped to reduce mortality of breast cancer patient by 20 percent but still determined to find new technologies that have potential to even further improve breast cancer statistics (*Saslow et al., 2007*).

Magnetic resonance imaging (MRI) is highly sensitive for cancer staging, problem-solving, post treatment surveillance and other indications. Continued improvements in technology and studies to assess outcomes will help to better define MRI's role in breast cancer. This is especially important in locally advanced

breast cancer which remains a challenging clinical problem. (Whitman and Strom, 2009).

Neoadjuvant chemotherapy (NAC) followed by surgery was introduced about 2 decades ago to treat patients with locally advanced breast cancer as it represents approximately 20% of all women who receive a diagnosis of breast cancer (*Delille et al.*, 2003).

Following NAC, accurate assessment of early tumor response or size of post therapy residual tumor burden and location is necessary for planning the future medical or surgical roadmap of the patient (*Loo et al.*, 2011).

Advanced MRI imaging techniques have shown to be of great importance in monitoring patient's response to chemotherapy and in differentiating responders from non-responders early during therapy (*Rosen et al.*, 2006).

AIM OF THE WORK

Is to highlight the role of advanced MRI imaging techniques in evaluating the response of neoadjuvant chemotherapy in breast cancer.