Bone Saving Hip Arthroplasty

Essay

Submitted for Fulfillment of Master Degree in

Orthopedic Surgery

By

Ibrahim Gado

Under Supervision of

Professor Dr/Akram Azzam

Professor of Orthopedic Surgery Cairo University

Professor Dr/ Mohammed Kamel Gouda

Professor of Orthopedic Surgery Cairo University

Cairo University 2009

إستبدال مفصل الفخذ مع الحفاظ على العظام المحبطة بالمفصل

رسالة توطئة للحصول على درجة الماجستير في جراحة العظام

مقدمة من الطبيب/ إبر اهيم محمد الشحات جادو بكالوريوس الطب والجراحة

تحت إشراف

الأستاذ الدكتور/ أكرم عزام

أستاذ جراحة العظام كلية الطب - جامعة القاهرة

الأستاذ الدكتور/ محمد كامل جوده

استاذ جراحة العظام كلية الطب - جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠٠٩

الملخص العربى

مقدمة:

إن عملية إستبدال مفصل الفخذ تعد بلا شك واحدة من أنجح الجراحات الحديثة في مجال جراحة العظام .

وإن كثيراً ما يكون معدل تحمل هذه المفاصل التقليدية قصير بشكل غير مرضى خاصة للمرضى النشطين صغار السن ، كما أن المفاصل الإبتدائية تؤدى إلى أوضاع غير مرضية خاصة في حالات مراجعة المفاصل.

إن علاج المرضى صغار السن الذين يحتاجون إلى إستبدال مفصل الفخذ هو تحدى حيث أن معدل تحمل المفصل التقليدى يتراوح من 15: 10 عام ، وبالتالى فإن هؤلاء المرضى يتعرضون لجراحات مراجعة متكررة لذلك فإن المفصل الذى يقلل من الفقدان العظمى يكون له ميزة نظرية.

إن إستبدال مفصل الفخذ مع الحفاظ على العظام المحيطة بالمفصل هو تقنية جذابة له المميزات الآتية:

- ١ الحفاظ على أعلى عظمة الفخذ.
- ٢ حدم تغيير الهندسة الطبية لمفصل الفخذ.
- ٣ الحفاظ على التجويف الطبيعي للمفصل.
- ٤ سهولة تركيب مفصل إبتدائي تقليدي في حالة الحاجة إليه.
 - ٥ تقليل نسبة فقدان الدم والحاجة إلى نقله.

إن تلك المفاصل قد لا تدوم فترة زمنية أطول من المفاصل التقليدية ولكنها أسهل في حالة التحول إلى المفاصل الأولية نظراً للحفاظ على سلامة نخاع العظام وكثافة الجزء العلوى من أعلى عظمة الفخذ.

تتضمن طرق إستبدال مفصل الفخذ مع الحفاظ على العظام المحيطة بالمفصل الآتى:

- ♦ التغيير السطحي لمفصل الفخذ.
 - ♦ مفصل الشريحة الإندفاعية.
 - ♦ المفاصل قصيرة الجذع.

إن التصميمات الحديثة للإستبدال السطحى لمفصل الفخذ قد تطورت من الطريقة الأولية التى أدخلت بواسطة سميث بتروسون عام 1948 إلى أول مفصل سطحى بواسطة سير چون شارلى فى أوائل الخمسينات والذى استخدم مادة التيفلون وقد تلى ذلك خطوات متسلسلة للتطوير بدأت من الجيل الأول من حيث كونه معدن على بولى إثيلين مروراً بالإستبدال النصفى السطحى حتى وصلت إلى كونه معدن على معدن.

إن المريض المثالى للإستبدال السطحى للمفصل يعتقد أن يكون أقل من عاماً نشيط ، متمتعاً بكثافة طبيعية للجزء العلوى من أعلى عظمة الفخذ .

يتم عمل التغيير السطحى لمفصل الفخذ في الحالات الآتية: خشونة المفصل – ضمور رأس عظمة الفخذ – تزحزح الكردوس النامى لرأس عظمة الفخذ – مرض بيرسيس وتشوهات أعلى عظمة الفخذ.

لكى تحافظ على التوزيع القسيولوچى للأحمال فى الجزء العلوى من عظمة الفخذ فإن مفصل الشريحة الإندفاعية قد تم إختراعه بواسطة هوجلر وچاكوب عام 1976 وقد كان سبب هذا التطور هو المشاكل المتعددة للمفاصل التقليدية فى السبعينات .

وفى خلال الثلاثون عاماً الماضية شهدت هذه التقنية تغيراً على ثلاث مراحل.

إن مبدأ التثبيت الأولى لمفصل الشريحة الإندفاعية يعتمد على المزج المتطابق للمفصل في عنق عظمة الفخذ مع الضغط على العظام المحيطة نتيجة لدخول جذع المفصل عبر شريحة جانبية لحين حدوث التثبيت الثانوى نتيجة لنمو العظام حول المفصل.

إن المفاصل قصيرة الجذع تهدف لعبور الفجوة ما بين المفاصل التقليدية ومفاصل التغيير السطحى لرأس عظمة الفخذ ، ومن حيث ناحية التقنية فإن هذه المفاصل يجب أن تتمتع بالآتى:

- ١. تجنب عظام الفخذ السليمة أثناء التركيب.
- التحميل على عنق وأعلى عظمة الفخذ في أعلى الطرق القسيولوجية.
- ٣. بناء وضع ميكانيكي مفضل بدون إطالة الطرف السفلي المصاب.
 - ٤. أقل الطرق تداخلاً في التعامل مع الأنسجة الرخوة أثناء التركيب.

تتوافر العديد من أشكال المفاصل المتطابقة مع أعلى عظمة الفخذ والتي تشترك في نفس مبدأ التحميل على أعلى عظمة الفخذ مع بعض الإختلافات الثانوية.

وأخيراً فإن طرق إستبدال مفصل الفخذ مع الإحتفاظ بالعظام المحيطة بالمفصل هو إستراتيچية حديثة لإستبدال المفصل المصاب في المرضى صغار السن شريطة الإختيار السليم للمرضى.

Introduction

The hip joint is important not only for walking, but also for the squatting, Kneeling or bowing. The hip joint is subjected to loads that may exceed six times body weight.

It is a joint at high risk. Commonly affected by diseases or injury, degenerative arthritis, avascular necrosis, infection and other diseases and disorders are manifested in the hip joint. For centuries attempts have been directed toward the relief of pain and the restoration of movement of the affected hip joint (Evarts, 1993).

Total hip replacement is undoubtedly one of the most successful therapies of modern orthopedic surgery. While pain liberation and joint function can often be received in older patients until end of life. The survival time is frequently unsatisfactorily short in young and active patients. Besides the significant bad long term results, the conventional stemmed leads to unsatisfactory conditions for revision surgery (Koehler et al,2002).

Bone saving (conserving) hip arthroplasty has always been an attractive strategy since it offers considerable advantages, such as avoidance of invasion of the intramedullary canal; less bone destruction and resection; normal femoral loading; avoidance of stress shielding, restoration of normal anatomy; reduced risk of dislocation; less leg inequality complications; less wear; wider range of motion; less blood loss

and transfusion and, if necessary, easier revision. These methods may not last longer than a conventional total hip replacement (THR), but it will be easier to convert to a primary THR because the femoral canal is intact and the proximal femoral bone density is preserved (Koehler et al, 2002).

Bone saving hip arthroplasty methods include, hip resurfacing arthroplasty; thrust plate prostheses and short stem hip prostheses.

In this study I will attempt to provide highlight of bone saving hip arthroplasty methods of the hip joint, evaluate its current status, and study the possible indications, contraindications, problems and complications of these procedures.

Applied Anatomy of the Proximal Femur

The Hip Joint:

It is a synovial joint with ball and socket variety. It can give both stability and wide range of motion. Its stability is due to adaptation of the articulating surfaces of the acetabulum and femoral head to each other and the labrum which encloses the femoral head beyond its equator, thus adding more stability (Fig. 1).

The great range of mobility results from that the femur having a neck that is much narrower than the equatorial diameter of the head (*Last*, 1990).

The capsule of the hip joint is attached circumferentially around the labrum and the transverse ligament. In the front, it is attached to the intertrochanteric line but behind it extends for only half of this distance.

The iliofemoral ligament (of biglow) is the strongest ligament of the hip joint that has inverted (V) shape, the base arise from the Anterior Inferior Iliac Spine (AIIS) and the diverging limbs are attached to the upper and lower ends of the intertrochanteric line (Figs. 1&2).

Other important ligaments include the pubofemoral ligament, the ischiofemoral ligament and Ligamentum teres.

The hip joint is innervated by the femoral nerve via nerve to rectus femoris, the sciatic nerve via nerve to quadratus femoris and the obturator nerve via the anterior division directly (*Eftekhar*, 1978).

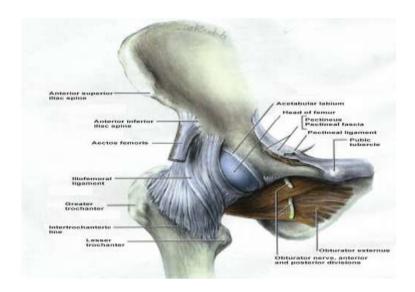


Fig. (1): Anatomy of the hip joint (Ant. view) (Last, 1990).

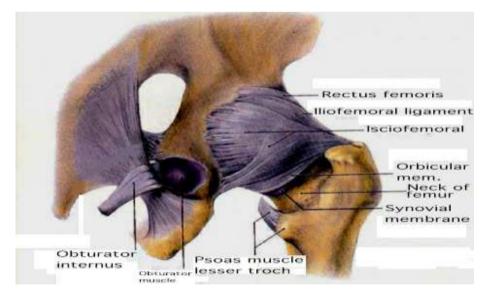


Fig. (2): Anatomy of the hip joint (Post. view) (Last, 1990).

The hip joint is supplied by the extracapsular arterial ring which is formed by branches from the medial and lateral circumflex femoral vessels. From this ring, the ascending cervical branches arise and penetrate the capsule at the intertrochanteric line giving branches called the retinacular arteries in four groups anterior, posterior, medial and lateral groups. The lateral group provides most of the blood supply to the head and neck. These vessels form another ring at the base of the femoral head called the intra capsular arterial ring.

The artery of Ligamentum teres supplies just small area of the head. The acetabulum is supplied by the nutrient arteries supplying the hip bone forming the acetabulum, the ileum, the ischium, and the pubis (Fig. 3) (*Last*, 1990).

The Femur:

It is the longest and strongest bone in the human body. Its length is necessary to accomplish the biomechanical needs of gait. Its strength is necessary to transmit the muscular and weight bearing forces. It's mostly cylindrical throughout its length, and it is anteriorly and laterally bowed in its mid portion. The extend of bowing is clinically relevant because if excessive, it may not be possible to utilize long straight implants without considerable undersizing.

The proximal metaphysis and neck are anteverted in relation to the posterior aspect of the femoral condyles by approximately 15 degrees (*Reikeras et al*,1983).

Extensive anteversion may make it difficult to utilize fixed stems (i.e. anteversion not adjustable) without considerable undersizing or osteotomy to correct the anteversion.

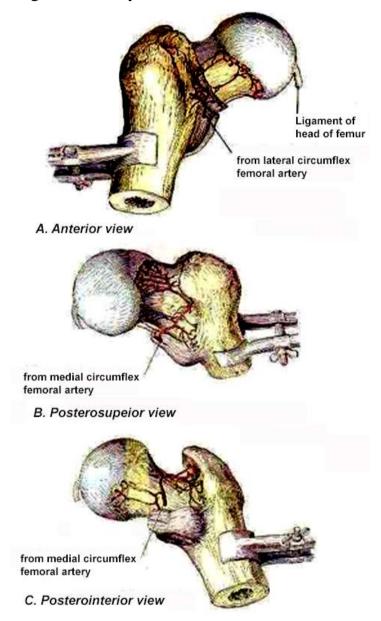


Fig. (3): The blood supply of the proximal femur (Last, 1990).

To quantitate abnormal anteversion, the CT scan should be done to evaluate anteversion prior to total hip arthroplasty (THA). It will be easier to approach and dislocate the excessively anteverted hip (as in congenital dysplastic hip (CDH) through the anterolateral approach. The retroverted hip may be more easily accessible from a posterolateral approach (the old slipped capital upper femoral epiphysis).

The angle between the femoral shaft and the neck is approximately 125-135 degrees. In most hips the center of the femoral head is at the level of the tip of the greater trochanter. As the neck shaft angle increases, the center of the head comes to lie above the level of the trochanter (resulting in coax valga and less offset). A decreased in the neck shaft angle results in coax vara and more offset. Also, these variants are important because if they are anatomically normal, the need to be reconstructed with the use of femoral component with similar offset and neck shaft angle. If the variant is pathological, it's necessary to reestablish normal hip joint kinematics and leg length (*Ray-Wasielewski*, 1998).

The femoral head is covered by articular cartilage, which thickens (3 mm) on the superior and posterior areas but thins down to 0.5 mm at the peripheral margin. It forms about 2/3 of a sphere and joins the neck at the subcapital sulcus.

The fovea capitis situated slightly below and behind its center for the attachment of the Ligamentum teres, is devoid of the cartilaginous covering. The proximal femur of younger patients tends to have a trumpet like or champagne fluted configuration (*Noble et al*, 1987).

The Acetabulum:

It is formed by union of the triradiate cartilage which is the line of demarcation between the three bones that forming the cup. The bones include the ilium that shares by less than 2/5 of the cup and the ischium which shares by more than 2/5 of the cup and the pubic bone sharing by 1/5 of the cup formation. The triradiate cartilage disappears near the puberty (*Eftekhar*, 1978).

The acetabulum faces outward, forward and laterally. It is reinforced and prominent superiorly and posteriorly to counteract the effect of the pressures exerted by the weight bearing. The margins of the acetabulum is surrounded by the labrum acetabuli to deepens the cavity and add more stability. The labrum is deficient downward and continued by the transverse ligament that give attachment to Ligamentum teres. The labrum is covered by synovial membrane on both surfaces (Fig. 4) (*Last*, 1990).

The non articulating surface, known as the acetabular fossa contains some fibrofatty tissue (Haversion fat pad) and opens below towards the acetabular notch. By transillumination on a dry specimen, it gives some transparency due to adherent