

Ain Shams University Faculty of Women for Arts, Science& Education Department of Zoology

Possible Protective Effect of Certain Flavonoid against Flutamide-Induced Hepatotoxicity in Adult Male Rats.

A Thesis submitted For (Ph.D.) Degree in Zoology By

Aml Salem Saleh Ahmed

Assist. Lecturer in Zoology Department Faculty of Women for Arts, Science and Education-Ain Shams University.

Supervisors

Prof. Dr. Fatma Mohamed Mazhar

Prof. of Comparative Anatomy and Embryology.

Department of Zoology,

Faculty of Women for Arts, Science and
Education-Ain Shams University.

Prof. Dr. Shadia Mohamed Kadry

Prof. of Histology& Histochemistry.
Department of Zoology,
Faculty of Women for Arts, Science
and Education-Ain Shams University.

Assist.Prof. Hala Fahmy Abd-Ellah Sayed

Assist. Prof. of Histology& Cytology.
Department of Zoology,
Faculty of Women for Arts, Science and
Education-Ain Shams University.

Dr. Hend Ahmed Sabry

Lecturer of Zoology.
Department of Zoology,
Faculty of Women for Arts, Science and Education
Ain Shams University.

جامعة عين شمس كلية البنات للآداب والعلوم والتربية قسم علم الحيوان

التأثير الوقائبي المحتمل للفلافونويد ضدالتسمو الكبدي المستحدث بماحة فلوتاميد في ذكور البرذان البالغة. رسالة مقدمة للحصول على درجة دكتوراه الفلسفة في العلوم (علم الحيوان)

مقدمة من

أمل سالم حالح أحمد

(هاجسټير فنۍ العلوم) هدرس هساعد بقسم علم الحيوان تحبه إشرافت

أ.د/ فاطمة محمد مظمر

أستاذ التشريح المقارن والأجنة قسم علم الحيوان كالمجان التدايم الماء الماء التدوان كالماء الآدايم العلم والتربية الماءة عين همس

أ.م.د. مالة محمد يمد الله سيد

أستاذ مسائد غلم الأنسجة و الظيا قسم غلم العبمان أ. د هادية محمد مجدري

أستاذ الأنسجة وكيمياء الأنسجة قسم علم الحيمان

كلية البنائم الآحاب والعلوم والتربية – جامعة عين همس كلية البنائم الآحاب والعلوم والتربية – جامعة عين همس

د. مند أدمد حبري

مدرس في غلو الميوان قسو غلو الميوان غلية البنائم الآحاب والعلوء والتربية – جامعة غين همس

First and foremost grateful thanks to "ALLAH" the most beneficent and merciful.

Any words would not be sufficient to express my deepest gratitude and appreciation to prodigious efforts of Prof.Dr. Fatma Mohamed Mazhar, professor of Comparative Anatomy and Embryology, Department of Zoology, Ain Shams University, for supervising and illuminating criticism in reading the manuscript. I greatly appreciate her meticulous guidance, emotional support and valuable time.

Words are not enough to reply Prof. Dr. Shadia Mohamed Kadry, professor of Histology and Histochemistry, Department of Zoology, faculty of Women, Ain Shams University, for her generous supervision, and for the critical reading and revision of all details of manuscript. Her scientific merit, deep experience, and constant support leading to completion of this thesis.

I am especially indebted to Assist. Prof. Hala Fahmy Abd-Ellah Sayed, Assist. Prof. of Histology & Cytology, Department of Zoology, faculty of Women, Ain Shams university, for her great efforts in planning the practical work, scientific help, constructive comments, kind co-operation, participation in revising the whole work, and for giving me so much attention and time. To her I shall be forever grateful.

Also, I want to thanks Dr. Hend Ahmed Sabry, Dr. of Physiology, Department of Zoology, faculty of Women, Ain Shams University, for her kind help through the physiological work.

I would like to extend my deepest appreciation to all the staff members of Zoology department.

Qualifications

Name: Aml Salem Saleh Ahmed.

Scientific Degree: M.Sc.

Department: Zoology

College: Faculty of Women for Arts, Science and

Education

University: Ain Shams University.

B.Sc. Graduation Year: 2007

M.Sc. Graduation Year: 2012

Approval Sheet

Name: Aml Salem Saleh Ahmed

Title: Possible Protective Effect of Certain Flavonoid against Flutamide-Induced Hepatotoxicity in Adult Male Rats.

Scientific Degree: M.Sc.

Supervisors

Prof. Dr. Fatma Mohamed Mazhar

Prof. of Comparative Anatomy and Embryology.

Department of Zoology

Faculty of Women for Arts, Science and

Education–Ain Shams University

Prof. Dr. Shadia Mohamed Kadry

Prof. of Histology & Histochemistry
Department of Zoology
Faculty of Women for Arts, Science and
Educatio-Ain Shams University

Assist. Prof. Hala Fahmy Abd-Ellah

Assist.Prof. of Histology& Cytology
Department of Zoology
Faculty of Women for Arts, Science and
Education-Ain Shams University

Dr. Hend Ahmed Sabry

Dr. of Zoology Department of Zoology Faculty of Women for Arts, Science and Education–Ain Shams University

ABSTRACT

Flutamide, a non-steroidal anti-androgenic anilide compound, is widely used for the treatment of prostatic cancer. It is an idiosyncratic hepatotoxicant that sometimes results in severe liver toxicity. It shows a photo hemolytic effect on human erythrocytes and photo induces lipid peroxidation. Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical mediated diseases. Morin, a member of flavonols, exerts antioxidant potential and offers protection against the oxidative stress induced by hydrogen peroxide. The present study aimed to investigate the protective effect of morin against flutamide on the rat liver. Seventy male albino rats weighing 190-200 g were used to study the analysis of liver function parameters, biochemical including ALT, AST, direct and total bilirubin activities in the blood sera and MDA, SOD, GSH and GST in liver tissue.

addition. the histological alterations histochemical changes, including polysaccharides and total proteins in liver tissues were investigated, as well as studying the electron microscopic alterations. experimental animals were divided into seven groups, 10 rats each, and treated as follows: 1) rats did not receive any treatment (control group); 2) rats received 0.5 ml of carboxy methyl cellulose (CMC, 0.5%) for 8 weeks (vehicle group); 3) rats received CMC for 4 weeks then 50 mg morin / kg b.w. for other 4 weeks (CM group); 4) rats

received 50 mg morin / kg b.w. for 8 weeks (morin group); 5) rats received CMC for 4 weeks followed by treatment with 100 mg flutamide/ kg b.w. for additional 4 weeks (CFgroup); 6) rats received CMC for 4 weeks then received 50 mg morin/ kg b.w.+ 100 mg flutamide/ kg b.w. for another 4 weeks (CMF group) and 7) rats received 50 mg morin/ kg b.w. for 4 weeks then received 50 mg morin/ kg b.w.+ 100 mg flutamide/ kg b.w. for extra 4 weeks (MMFgroup). Rats received their respective doses daily by oral gavage.

The results of the present study in flutamide group revealed that the mean final body weight decreased; meanwhile, the absolute and relative liver weights increased. There was a very highly significant increase in ALT, AST, direct and total bilirubin activities in serum while, in the hepatic tissue there was an increase in MDA and a decrease in SOD, GSH and GST levels.

The histopathological studies displayed deleterious alterations in the liver tissue where flutamide caused distortion of hepatic architecture with swollen vacuolar hyaline degeneration, atrophy and necrosis of hepatocytes. Some nuclei of the degenerated cells showed pyknosis and showed karyolysis. Inflammatory cellular other infiltration in addition to congestion and dilatation of the blood vessels were also detected. Histochemical studies revealed that flutamide alone decreased polysaccharides and total proteins in the liver tissue. These changes were confirmed at ultrastructural level, including pyknotic nuclei irregular nuclear envelopes, well as as

mitochondria with ill-differentiated cristae, fragmented rough endoplasmic reticulum and increased collagenous fibrils manifesting early sign of fibrosis.

In CMF group, morin showed significant improvement in the levels of ALT, AST, direct and total bilirubin and MDA, SOD, GSH, GST and the mean final body weight and absolute and relative liver weights. Also, the histological, histochemical and electron microscopic alterations were improved.

On the other hand, MMF group showed marked recovery in all these changes induced by flutamide. The results of this study indicated that pre- and co-administration of morin was found to be more effective in restoring flutamide-induced biochemical, histological, histochemical and electron microscopic alterations.

CONTENTS

LIST OF ABBREVIATIONS	I
LIST OF TABLES	III
LIST OF FIGURES	IV
INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	4
1- Effects of anticancer drug flutamide on liver	4
2- Effects of flavonoid morin	20
MATRIALS AND METHODS	28
A - Experimental animals	28
B- Treatment substances and the route of administration	28
C- Experimental design	30
D- Preparation of serum samples	31
E- Preparation of tissue samples	32
F-Determination of mean final body weight, absolute and relative liver weights.	32

1-Mean final body weight	32
2-Absolute and relative liver weights	33
G - Biochemical methods	33
1-Determination of serum alanine aminotransferase (ALT)	33
2-Determination of serum aspartate aminotransferase (AST).	34
3- Determination of direct and total bilirubin.	34
4- Determination of malondialdehyde (MDA)	35
5- Determination of superoxide dismutase (SOD)	35
6- Determination of glutathione reduced (GSH)	36
7- Determination of glutathione-S- transferase (GST)	37
H- Microscopical studies	38
1-Light microscopy study	38
A) Histopathological studies	38
B) Histochemical studies	38

a) Polysaccharide content.		
b) Total proteins.	39	
2-Transmission electron microscopy study		
I– Statistical analysis	41	
RESULTS	42	
A- Mean final body weight, absolute and relative liver weight changes	42	
1) Mean final body weight	42	
2) Absolute and relative liver weights	42	
B- Biochemical studies	47	
1) Serum alanine aminotransferase (ALT) (U/ ml) level	47	
2) Serum aspartate aminotransferase (AST) (U/ ml) level	47	
3) Serum bilirubin (direct and total) levels	50	
4) Hepatic malondialdehyde (MDA) level	53	
5) Hepatic superoxide dismutase (SOD) activity	53	
6) Hepatic glutathione reduced (GSH) level	56	

7) Hepatic glutathione- S- transferase (GST) activity		
C) Microscopical studies	60	
1) Light microscopy study	60	
A) Histopathological studies	60	
B) Histochemical studies	91	
a) Polysaccharide content.	91	
b) Total proteins	111	
2) Transmission electron microscopy study	131	
DISCUSSION AND CONCLUSION	161	
SUMMARY	188	
REFERENCES	195	
ARABIC SUMMARY		

LIST OF ABBREVIATIONS

ABT	Aminobenzotriazole
AC	Ammnium chloride
ALF	Acute liver failure
ALP	Alkaline phosphatase
Alpha-SMA	Alpha-smooth muscle actin
ALT	Alanine aminotransferase
APAP	Acetaminophen
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate
BSEP	Bile salt export pump
CAT	Catalase
CMC	Carboxy methyl cellulose
Cox-2	Cyclooxygenase
CP	Cisplatin
CPA	Cyproterone acetate
CPR	Cytochrome P450 reductase
CPX	Cyclophosphamide
DEN	Diethylnitrosamine
DMH	Dimethylhydrazine
DOCA	Deoxycorticosterone acetate
DMN	Dimethylnitrosamine
DPPH	Diphenylpicrylhydrazyl
ETC	Electron transport chain
GGT	Gamma-glutamyl transpeptidase
GLDH	Glutamate dehydrogenase
GPx	Glutathione peroxidase
GSH	Reduced glutathione
GSSG	Glutathione disulfide
GR	Glutathione reductase
HP	Hydroperoxide

Il- 1 beta	Interleukin-1 beta
Il-6	Interleukin-6
LDH	Lactate dehydrogenase
LFTs	Liver function tests
LHRH	Luteinizing hormone releasing hormone
LPO	Lipidperoxidation
LPS	Lipopolysaccharide
MC- LR	Microcystin- LR
MDA	Malondialdehyde
Mor	Morin
NaMSA	Morin-5'-sulfonic acid sodium salt
NaQSA	Quercetin-5'-sulfonic acid sodium salt
NF- _K B	Nuclear factor Kappa of activated B cells
PAB	Partial androgen blockage
PB	Phenobaribital
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
RT	Radiation therapy
RT-PCR	Reverse transcriptase polymerase chain
	reaction
SOD	Superoxide dismutase
TAB	Total androgen blockage
TAS	Total androgen suppression regimen
TBARS	Thiobarbituric acid reactive substances
TGF- beta1	Transforming growth factor beta (1)
TNF	Tumor necrosis factor
UDCA	Ursodeoxycholic acid