BIO - MONITORING THE CHANGES IN THE POPULATION DENSITY OF PINK BOLLWORM IN RELATION TO THE CORRESPONDING CROP SIZED SYSTEM

By

DALIA ABDALLAH ABDEL-SALAM MOHAMMED

B.Sc. Agric. Sc. (Entomology), Ain Shams University, 2000 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2008

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

Approval Sheet

BIO - MONITORING THE CHANGES IN THE POPULATION DENSITY OF PINK BOLLWORM IN RELATION TO THE CORRESPONDING CROP SIZED SYSTEM

By

DALIA ABDALLAH ABDEL-SALAM MOHAMMED

B.Sc. Agric. Sc. (Entomology), Ain Shams University, 2000 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2008

This	thesis for Ph.D. degree has been approved by:
Dr. N	Mohammed Abdel-Ghaffar Mahmoud
	rof. of Economic Entomology, Faculty of Agriculture, El-Azhar University.
Dr. N	Mohamed Salem Abd El Wahed
	rof. of Economic Entomology, Faculty of Agriculture, Ain Shams University
Dr. S	Shoukry Ahmed El-Sayed El-Refai
	rof. of Economic Entomology, Faculty of Agriculture, Ain Shams University.

Date of Examination: 7/11/2013

BIO - MONITORING THE CHANGES IN THE POPULATION DENSITY OF PINK BOLLWORM IN RELATION TO THE CORRESPONDING CROP SIZED SYSTEM

By

DALIA ABDALLAH ABDEL-SALAM MOHAMMED

B.Sc. Agric. Sc. (Entomology), Ain Shams University, 2000 M.Sc. Agric. Sc. (Economic Entomology), Ain Shams University, 2008

Under the supervision of:

Dr. Shoukry Ahmed El-Sayed El-Refai

Prof. of Economic Entomology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

Dr. Abd El-Aziz Abouel-Ela Abd El-Aziz Khedr

Head of Research of Economic Entomology, Plant Protection Research Institute, Agricultural Research Centre.

ABSTRACT

Dalia Abdallah Abdel-Salam: Bio-Monitoring the Changes in the Population Densitiy of the Pink Bollworm in Relation to the Corresponding Crop Sized System. Unpublished Ph.D. Thesis. Department of Plant protection, Faculty of Agriculture, Ain Shams University, 2013.

The pink bollworm, *Pectinophora gossypiella* (Saund.) is the most destructive lepidopterous cotton pest in Egypt, causing a lot of yield losses. The great importance of this insect pest as mainly, this study is an attempt to acquire more information about the population dynamics and time of occurrence of P. gossypiella. Also, the need for more accurate stimulation. The aim of this part of study is to establish the velocity constants; i.e. the relationship between temperature and speed of development which give a quantitative expression for this relationship, using thermal summations of temperature dependent growth for insect population modeling has become vital. To be able to decide the appropriate times for controlling the bollworms, it was essential to learn something of their population densities under the field conditions of Menoufia Governorate. The seasonal history of the pests occurring on a crop, their population density, fluctuation in abundance and population composition in relation to crop and weather conditions should be thoroughly known for timely adoption of protection measure.

Biochemical aspects in the pink bollworm *P. gossypiella* strains. Hydrolyzing enzymes activity, i. e. acetylcholinesterase, alkaline phosphatase, carboxyl esterase and nonspecific-esterases as well as total protein contents, total carbohydrate and total lipids were determined in the 4th instar larvae of *P. gossypiella* strains. In this

study, five different field colony strains were compared with the baseline laboratory strain that was not subjected to any insecticides.

Six strains of the pink bollworm, *Pectinophora gossypiella* were used in the present study. The laboratory strain was used as a baseline in the molecular biology assays. Five strains were selected from natural populations, fields located in Behira, Kafr El-Shiekh, Qlyubia, Sharkia and Beni-Suef Governorates. The finger print studies included the analysis of the plod genomic DNA of the tested strains under this study by using RAPD-PCR method. A battery of five primers was used to evaluate the mutagenic among the sex strains. The primers were (OPA-18 OPD-03 OPB-03, OPC-02 and OPE-12). It is interest to note that the less damaging effect to pink bollworm DNA could be attributed to a good detoxifying mechanism developed by the insect as a result of wide spread and long term exposure of insect larvae in additional to different thermal degrees in the fields.

Keywords:

Pectinophora gossypiella, Developmental threshold, Thermal units, Seasonal abundance, Generations, Biochemical aspects, Hydrolyzing enzymes, Nonspecific-esterases, Total protein, Total carbohydrate, Total lipids, Molecular.

ACKNOWLEDGEMENT

Ultimate thanks to "ALLAH"

I would like to express my deepest appreciate and respect to *Prof. Dr. Shoukry Ahmed El-Rafai*, professor of Economic Entomology, Plant Protection Department, Faculty of Agriculture, Ain Shams University for suggesting the research work, for his kind supervision, generous assistance, continuous support, encouragement, constructive criticism and correcting the manuscript.

I would like to express my sincere thanks to *Prof Dr. Abdel-Aziz Abouel-Ela Khidr*, Professor of Economic Entomology, Bollworms Research Department, Plant Protection Research Institute, for suggesting the research work, generous help, close supervision, encouragement during the preparation of the work and willingness to discuss various problems and reviewing the manuscript.

I wish to express my deepest gratitude to *Late Prof. Dr. Gamil Borhan El Dein El-Saadany*, Professor of Economic entomology, Plant Protection Department, Faculty of Agriculture, Ain Shams University for his endless support and suggesting the research work.

The author wishes to express her sincere thanks and gratitude to **Prof. Dr. Azza Kamal Emam**, Professor of Economic Entomology, Head of Plant Protection Department, Faculty of Agriculture, Ain Shams University for her kind help, valuable scientific advice and faithful encouragement.

I would like to thank all staff member and assistants in the Department of Plant Protection, Faculty of Agriculture, Ain Shams University for their kind friendship and encouragement.

I would also like to thank all staff member and assistants in the Department of Bollworms Research, Plant Protection Institute, Agricultural Research Center for their kind help.

Deep appreciation and love are expressed to my family including *my father, my sisters, my brother* and *my family in law*, for fruitful help and continuous encouragement throughout this work.

Finally, I would like to express special gratitude and sincere thanks to my husband *Hytham* for his continuous encouragement, fruitful help and patient support during this work. I hope the great and blessing future for my lovely children, *Rana* and *Ahmed*.

CONTENTS

No.		Page
	LIST OF TABLES	iii
	LIST OF FIGURES	vii
1.	INTORODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	Influence of constant temperatures on the developmental	
	stages of Pictinophora gossypilla in relation with heat	
	units in degree-days (DD's)	4
2.2.	Seasonal variability and generation in relation to	
	accumulated heat units and sex pheromone trap catches	8
2.3.	Biochemical studies	10
2.4.	Finger print studies.	13
3.	MATERIALS AND METHODS	20
3.1.	Laboratory studies	20
3.2.	Field trials	24
3.3.	Field-Laboratory bioassays	27
3.4.	Finger print studies	32
4.	RESULTS AND DISCUSSION	34
4.1.	Laboratory Studies	34
-	Influence of constant temperatures on the biological	
	aspects of Pectinophora gossypiella and its relation to	
	degree-days	34
-	Egg stage	34
-	Larval duration.	38
-	Pupal stage	42
-	Adult stage	47
-	The generation	60
4.2	Field trials.	64

-	Population dynamics and approximated number of	
	annual generations of pink bollworm, Pectinophora	
	gossypiella based on total number of male caught in sex	
	pheromone traps	64
-	Growing cotton season of 2011	66
-	Growing cotton season of 2012	68
-	Relationship between the numbers of the pink bollworm	
	moths caught in sex attractant pheromone traps and its	
	infestation rate in cotton flowers and green bolls	72
-	Seasonal variability and prediction of Pectinophora	
	gossypiella male moths population in relation to heat	
	units accumulation	79
4.3.	Biochemical aspects in different strains of the pink	
	bollworm, Pectinophora gossypiella	87
-	Hydrolases activity	87
-	Total protein contents	95
-	Total carbohydrates content	97
-	Total lipids content	99
4.4.	Finger print	102
5.	SUMMARY	119
6.	REFERENCES	127
7.	ARABIC SUMMARY	

LIST OF TABLES

No.		Pag
1	List of the primer names and their nucleotide sequences used in this study	32
2	Incubation period of <i>Pectinophora gossypiella</i> under different constant temperatures and its thermal	
3	requirements	35
4	Pupal period of <i>Pectinophora gossypiella</i> under different	
5	constant temperatures and its thermal requirements Pre-oviposition period of <i>Pectinophora gossypiella</i> under different constant temperatures and its thermal	43
6	requirements	48
7	temperatures	50
8	requirements	52
0	-	54
9	Effect of deferent constant temperatures on the rates of fecundity and fertility of <i>Pectinophora gossypiella</i>	56
	gossypiella produced under four constant temperatures and corresponding sex ratio	59

11	Duration of Pectinophora gossypiella generation under
	different constant temperatures and its thermal
	requirements
12	Average number of Pectinophora gossypiella male
	moths / trap / 3 days during the season of 2011 in
	Menoufia Governorate
13	Average number of Pectinophora gossypiella male
	moths / trap/ 3 days during the season of 2012 in
	Menoufia Governorate
14	Relationship between population fluctuations of
	Pectinophora gossypiella male moths captured in sex
	pheromone baited traps and rates of green bolls
	infestation by the larvae during the cotton season of 2011
	in Menufia governorate.
15	Relationship between population fluctuations of
	Pectinophora gossypiella male moths captured in sex
	pheromone baited traps and rates of flowers and green
	bolls infestation by the larvae during the cotton season of
	2012 in Menufia governorate.
16	Comparison of observed and expected Pectinophora
	gossypiella generations by monitoring pheromone baited
	traps and accumulated thermal units (DD's) in Menoufia
	Governorate during cotton seasons 2011 and 2012
17	Acetylcholinesterase activity in the whole homogenates
	of the 4 th instar larvae of the different field strains of
	Pectinophra gossypiella in comparison with laboratory
	strains.
18	Alkaline phosphatase activity in the whole homogenates
	of the 4 th instar larvae of the different field strains of
	Pectinophra gossypiella in comparison with laboratory
	strains.

19	Alfa estrases activity in the who homogenates of the 4 th
	instar larvae of the different field strains of Pectinophra
	gossypiella in comparison with laboratory strains 9
20	Carboxylestrases activity in the whole homogenates of
	the4 th instar larvae of the different field strains of
	Pectinophra gossypiella in comparison with laboratory
	strain
21	Total protein contents in the whole homogenates of the
	4 th instar larvae of the different field strains of
	Pectinophra gossypiellain in comparison with laboratory
	strain
22	Total carbohydrates contents in the whole homogenates
	of the 4 th instar larvae of the different field strains of
	Pectinophra gossypiellain in comparison with laboratory
	strain
23	Total lipids contents in the whole homogenates of the 4 th
	instar larvae of the different field strains of Pectinophra
	gossypiella\ in comparison with laboratory strain 10
24	Total number and size of RABD-PCR fragments
	generated by arbitrary primer OPA-18 in different strains
	of Pectinophora gossypeilla.
25	Estimated similarity index between the six strains of
	Pectinophra gossypiella larvae using OPA-18
26	Total number and size of RABD-PCR fragments
	generated by arbitrary primer OPB-03 in different strains
	of Pectinophra gossypeilla.
27	Estimated similarity index between the six strains of
	Pectinophra gossypiella larvae using OPB-03 10
28	Total number and size of RABD-PCR fragments
	generated by arbitrary primer OPC-02 in different strains
	of Pectinophra gossypeilla