Applications of Femtosecond Laser in Corneal Surgery

Essay

Submitted for partial fulfillment of master degree in ophthalmology

Presented By

Ahmed Abdelwahab Abdelraheem Ibrahim

M.B, B.CH(Assiut University)

Supervised by

Prof. Dr. Negm Eldin Helal Abd Allah

Professor of Ophthalmology

Ain Shams University- Faculty of Medicine

Dr. Mahmoud Abd El Meguid Abd Ellatif

Lecturer of Ophthalmology

Ain Shams University- Faculty of Medicine

Faculty of Medicine

Ain Shams University

CAIRO

EGYPT

2011

تطبيقات ليزر الفيمتوثانية في جراحات القرنية

رسالة

توطئة للحصول على درجة الماجيستير في طب وجراحة العيون

مقدمة من

الطبيب/ أحمد عبدالوهاب عبدالرحيم ابراهيم

تحت اشراف

أ در نجم الدين هلال عبدالله

أستاذ طب وجراحة العيون

كلية الطب جامعة عين شمس

د/ محمود عبدالمجيد عبداللطيف

مدرس طب وجراحة العيون

كلية الطب جامعة عين شمس

كلية الطب- جامعة عين شمس

القاهرة

2011

Contents

Acknowledgement	
Abbreviations	
List of figures and tables	
Introduction and aim of work	1
Anatomy of the cornea	4
Principles of FSL	9
FSL Machines	16
FSL assisted LASIK	21
Complications, Limitations and Side effects	31
FSL assisted Corneal Transplantation	41
FSL assisted Penetrating Keratoplasty	42
FSL assisted Anterior Lamellar Keratoplasty	46
FSL assisted Posterior Lamellar Keratoplasty	49
FSL assisted ICRS Insertion	54
Miscellaneous uses of FSL	68
FSL assisted Arcuate Keratotomy	68
FSL assisted Wedge Resection	70
FLEX and SMILE	71
INTRACORE	73
FAB	74
FALT	76
FSL assisted Cataract Surgery	79
Under Investigation Applications of FSL	80
Summary	82
Reference	86
Arabic Summary	

List of Figures

Fig.	Page	Description	
1	5	Microscopic anatomy of the cornea	
2	13	Mechanisms of corneal femtodissection	
3	14	Decreasing tissue bridges by the "double pass"	
		technique	
4	14	Decreasing tissue bridges by overlapping laser	
		pulse	
5	15	Relation of Distance between laser pulses and	
		laser pulse energy	
6	15	Effect of High pulse energy FSL machine	
7	16	Commercially available femtosecond lasers for	
		refractive surgery	
8	17	Visumax and Femtec curved docking systems	
9	21	Creation of a corneal flap with a	
		microkeratome versus intralase laser	
10	24	Flap lifting and adhesion lysis using a spatula	
11	25	Postoperative BCVA after conventional LASIK,	
		Conventional Intra-LASIK and Custom Cornea	
		Intra-LASIK	
12	27	Meniscus flap versus planar flap	
13	28	Optical coherence tomography (OCT) of thin-	
		flap FSL laser in situ keratomileusis (LASIK) for	
		myopia, revealing a uniform flap thickness less	
		than preset value of 90 μm	
14	30	Stromal bed images in the Lt column were cut	
		with Hansatome and stromal bed images in the	
		Rt column were cut with IntraLase	
15	32	OBL (arrow) during LASIK flap creation	
16	33	Cavitation gas may occasionally enter posterior	
		stroma, subepithelial space, and anterior	

		chamber	
17	34	Intraoperative photograph of an eye after the	
		creation of the flap with the FS laser. Cavitation	
		bubbles can be observed in the anterior	
		chamber	
18	37	Flap folds	
19	38	Epithelial ingrowth	
20	39	Decentered flap	
21	40	Interface haze	
22	43	Illustration of the 5 wound configurations	
		created in this study by the IntraLase-enabled	
		keratoplasty software	
23	45	diagram showing biomechanical and kinetic	
		properties of manual keratoplasty with	
		transscleral suture- fixated PC IOL and	
		femtosecond-assisted keratoplasty	
24	47	different surgical approaches for DALK	
25	48	An Anwar scissors is used to excise the last	
		portion of stroma over the bare recipient	
		Descemet membrane and Recipient anterior	
		stroma is peeled away along a dissection plane	
		created using a laser lamellar raster pattern.	
		Before injecting air	
26	51	FSL technology in PLK	
27	53	The shape of the Hyp-SCL as seen on the	
		porcine cornea with AC-OCT	
28	54	Standard INTACS	
29	55	Ferrara rings	
30	56	Kera rings	
31	58	Clinical photograph of the right eye after Intacs	
		SK ring segments and corneal topography of	
		the right eye showing the reduction in corneal	
		ectasia	
32	58	axial topographical map showing the area of	
		steepest curvature where INTACS SK are	

		inserted
22	(1	inserted
33	61	Ring movement with overlap of the superior
		ring over the inferior ring edges at the incision
		site
34	61	Stromal lysis in the inferior part of one of the
		segments
35	61	Ring extrusion 5 months after implantation
36	62	Severe migration of the inferior segment that
		indicates it removal
37	63	Channel creation with a FSL after applanation
		with the laser's glass applanator shows ideal
		centration of the channel relative to the pupil
		and Temporal displacement
38	64	Creation of channels for INTACS using FSL
39	65	Post-RK eye after implantation of a single
		inferior ICRS using the FSL with a 5.0 mm
		implantation zone
40	65	Topographic change between preoperatively
		and 6 months postoperatively using INTACS in
		pellucid marginal corneal degeneration
41	67	Riboflavin injection into the Intacs channel
		after FSL application
42	69	Slitlamp photograph of a post-PK eye after 2
		oblique arcuate astigmatic incisions were made
		using FSL and Intraoperative photograph from
		the FSL (top left) indicates the placement of the
		incisions
43	71	Schematic illustrations of LAR wedge width
		calculation
44	72	FLEX illustration
45	74	Slit-lamp findings of the same eye (Left) 1 hour
		postoperatively, (Right) 1 day postoperatively
		after INTRACOR
46	75	Slit lamp corneal photo immediately after FAB

47	78	Before and after	FALT			
48	81	Intralenticular accommodation		pulses	to	restore

List of Tables

Table	Page	Description
1	11	Typical laser parameters and tissue effects for photodisruption in the ns, ps and fs regimes
2	59	Normogram of segment distribution and thickness according to area of ectasia and spherical equivalent (KERARING)
3	59	Recommended thickness (INTACS) nomogram for keratoconus
4	66	Clinical outcomes of FSL assisted ICRS in different age groups

ACKNOWLEDGMENT

First of all, I thank ALLAH the most gracious and the most merciful.

I would like to express my great gratitude and respect to **Prof. Dr. Negm Eldin Helal Abd Allah**, Professor of Ophthalmology, Ain Shams University, and thank him for his outstanding encouragement, advice and his sincere endless support throughout this work.

I feel greatly indebted to **Dr. Mahmoud Abd El meguid Abd Ellatif**, Lecturer of Ophthalmology, Ain Shams University,
for his great care and patience, sincere guidance, tremendous
effort and continuous valuable advice throughout this work.

No words can express my sincere gratitude and appreciation to my father and my mother who have been always behind my success.

Introduction

Femto- (symbol f) is a prefix in the metric system denoting a factor of 10^{-15} or 0.00000000000000001. Adopted by the 11th Conférence Générale des Poids et Mesures, it was added in 1964 to the SI (Système international d'unités). It is derived from the Danish word femten, meaning "fifteen". While Ahmed H. Zuwail the famous Egyptian scientist, won the Noble prize in 1999 for his work on femtochemistry. (Wikipedia online)

Ultra short pulse generation remains the subject of active research. Rapid progress in this field has led to the creation of practical and useful lasers that can now produce pulses on the femtosecond FS (10 ⁻¹⁵ s) time scale. (Wayne and Knox, 2000)

Lasers with ultrafast pulses have been developed to decrease the energy necessary to incise tissues and to decrease damage to surrounding tissue. (Sugar, 2002)

The highly localized tissue effect of low energy femtosecond laser (FSL) may expand the capabilities and precision of this technology and may be used to create three-dimensional intrastromal resection with micron precision. (Ratkay-Traub, et al, 2003)

The development of FSL technology has created new opportunities to advance corneal surgery, taking advantage of the unique anatomy and accessibility of the cornea. With the desire for minimal invasive procedure and predictable outcomes, this technology will advance the standard of care in corneal surgery in coming years. *(Farjo and Farjo, 2009)* FSL re-invigorated Laser in situ Keratomileusis (LASIK), simplified Intracorneal Ring Segments insertion (ICRS), and

re-invented corneal transplantation. They have brought precision to corneal surgery just as phacoemulsification brought precision to lens surgery. *(Faktorovich, 2009)*

FSL is also used in correction of high astigmatic errors following Keratoplasty (KP) either by Arcuate Keratotomy (AK) (Buzzonetti, et al, 2009) or by Wedge Resection (Ghanem and Azar, 2006), Femtosecond laser-assisted diagnostic corneal biopsy (FAB) (Yoo, et al, 2008), Collagen Cross-linking (CXL) in early Keratoconus with riboflavin in a FSL created pocket (Kanellopoulos, 2009), Intrastromal correction of presbyopia (INTRACOR procedure) (Ruiz, et al, 2009), Femtosecond laser Lenticule Extraction (FLEX) for correction of myopia (Ibrahim, 2009) and hyperopia (Sekundo, 2009) and Small-Incision Lenticule Extraction (SMILE) (Doane, 2009) and Femtosecond laser-Assisted Anterior Lamellar Corneal Staining—Tattooing (FALT). (Kymionis, et al, 2009)

The future of FSL in corneal and refractive surgeries may include new applications like the ones still under laboratory studies as Intralenticular FSL pulses for the restoration of accommodation (*Schumacher*, et al, 2008) and (*Ripken*, et al, 2008), Intra-tissue Refractive Index Shaping (IRIS) of the cornea and lens using a low-pulse-energy FSL oscillator. (*Ding*, et al, 2008)

After several years of development, new intraocular FSL designed for cataract surgery are beginning to garner attention, the initial clinical use of the LenSx Femtosecond laser (LenSx Lasers, Inc., Aliso Viejo, California) was very promising. (Nagy, 2009)

Aim of Work

The aim of this work is to highlight the different applications of FSL in corneal surgery and to discuss its advantages over manual techniques, its disadvantages, limitations, side effects and recorded complications.

Anatomy of the Cornea

The cornea is the anterior part of the outermost layer of the eye. The cornea helps to protect the rest of the eye from germs, dust, and other harmful matter. (*Hughes*, 2008)

Macroscopic anatomy:

The cornea is a transparent avascular tissue highly specialized to refract and transmit light with a smooth outer convex surface and inner concave surface. It forms part of what is almost, a sphere, but is usually more curved in the vertical than the horizontal meridian, giving rise to astigmatism with the rule. (Smolin and Foster, 2005)

Dimensions

The axial thickness of the cornea is 0.5mm centrally and its thickness increases gradually toward the periphery where it is about 0.7mm. The refractive index of the cornea is "1.4". (Krachmer, et al. 2005)

The front of the cornea appears elliptical, "11.7" mm wide in the horizontal meridian and "10.6" mm in the vertical meridian. On the other hand, the posterior surface is circular, "11.7"mm in diameter. The radius of curvature of the anterior surface is "7.8" mm, and of the posterior surface is "6.8" mm in the central third. (Hughes, 2008)

Microscopic anatomy:

Behind the per-corneal tear film are five tissue layers:

- Epithelium.
- Bowman's layer.
- Stroma.
- Descemet's membrane.
- Endothelium. (Langston, 2007)

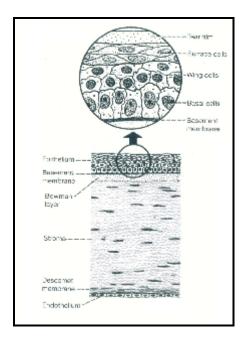


Figure (1): Microscopic anatomy of the cornea. (Kanski, 2007)

1) Epithelium

Non-keratinized stratified squamous epithelial cells, the thickness of the corneal epithelium is approximately $50\mu m$, which is about 10% of the total thickness of the cornea. (Hanna, et al, 1989)

The corneal epithelium consists of five or six layers of three different types of epithelial cells :

a) Superficial cells

This includes two to three layers of terminally differentiated cells. These cells are flat and polygonal, 2 to 6µm in thickness, the cell membrane of these cells characterized by extensive apical microvilli and microplicate which in turn covered by a fine, closely opposed, charged glycocalyceal layer. Laterally adjacent superficial cells are joined by tight-junctional complex which restrict entry of tears into the intercellular