Ain Shams University
Faculty of Computer
& Information Sciences
Computer Science Departement

Developing an Intelligent Decision Support System for Shipyard Region Selection

A Thesis submitted to the Department of Computer Science, Faculty of Computer and Information Science, Ain Shams University, in partial fulfillment of the requirements for the degree of phd of Computer and Information Sciences.

By: MOHAMED RIZK AWAD RIZK

M.Sc Degree in Computer Science, Department of computer & Information sciences, Institute of Statistical studies and research, Cairo University.

Supervised By:

Prof. Taymoor Mohamed NazmyVice Dean, Faculty of computers
&Information Science, Ain Shams
University

Prof. Ismael Amr Ismael
Prof. Computer and Information
Science Dept.,6 October
University

To my parents

To my wife

To my son

Acknowledgement

Thanks to ALLAH, the most gracious and the most merciful, that helps me in achieving this work.

I wish to express my sincere appreciation and thanks to my supervisors: Prof. Taymoor Nazmy and Prof. Amr Ismail for their guidance and insight throughout the research. They provided me unflinching encouragement and support in various ways.

I particularly wish to thank my parents for their understanding, motivation and patience. Without their support in life, I would never have got this far.

I wish to specially thank my wife for unwavering support and understanding during the many hours I dedicated to achieve this work.

Another specially thank for my dear Engineering Samir Abdin for his support during my way to achieve this work.

Special thanks to my director Professor Sami Balbaa for allowing time for me to accomplish this work.

Lastly, but in no sense the least, I am thankful to all colleagues and friends who were encouraging me strongly during the execution of this work.

Publications

- M.R.Awad, I.A.Ismail, T.M.Nazmy. Multi-criteria evaluation based on Fuzzy AHP and TOPSIS (Case study: Transportation Modes in Cairo). Fifth International Conference on Intelligent Computing and Information System. ICICI 2011 Faculty of Computer and Information Science Ain Shams University (2011).
- 2. M.R.Awad, I.A.Ismail, T.M.Nazmy. A Consensus Model For Choosing The Best Bulk carrier Regional Shipbuilding .Global Engineering, Science and Technology Conference ,Dubai, UAE.1-2 April, (2013).
- 3. T.M.Nazmy, M.R.Awad, I.A.Ismail. "Bulk Carrier Market Prediction using Artificial Neural Network", Al-Zaytoonah University of Jordan. Faculty of Science and Information Technology ICIT conference (2013).
- M.R.Awad, I.A.Ismail, T.M.Nazmy." Integrating Approach For Multi-Criteria Decision Making (Case Study: Ranking For Bulk Carrier Shipbuilding Region)" International Journal of Scientific & Technology Research Volume 2, ISSUE 10, ISSN 2277-8616, October (2013).
- 5. M.R.Awad, I.A.Ismail, T.M.Nazmy." A Consensus Model for Choosing the Best Bulk carrier Regional Shipbuilding". International Journal of Scientific & Technology Research. IJSTR, April (2014).

Abstract

Investing in Bulk Carrier market constitutes risky investment due to the volatility of the Bulk Carrier orderbook. Ship owners invariably take several quotations before making an order for building new ship. Shipyard process has indeed swung upwards or downwards depending upon the number of shipyards competing for a given volume of orders, and the shipyard region.

The decision makers for strategic purchasing in navigation company greatly require a fair tool to assist them in determining the best time to build a new ship, and appropriate region forthwith, which belongs by the prosperity of the problem to Multi Criteria Decision Making problem, which were discussed and developed by many different researches because it is one of the significant keys in reducing cost.

In this study, a Multi-layer Perceptron Neural Networks (MLP) was implemented to forecast Bulk Carrier shipyard market to determine the best time to make an order for building a new Bulk Carrier ship. In addition, a decision support system model was developed for select best shipyard region which combined fuzzy set theory and group decision with the methodology known as Analytical Hierarchy Process (AHP) that deals with multi-criteria decision making (MCDM) to decrease the influence of decision maker's subjective preferences and control the uncertain and imprecise variations during evaluation process. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied to the final rank of alternatives.

Linguistic variables with triangular fuzzy numbers are used to develop the decision makers risk attitudes in order to define a more complete Fuzzy Analytical Hierarchy Process technique.

Another methodology was used for the same object called Consensus Group Decision Making (CGDM), with interval Fuzzy preference relation, finally a comparison of the two methodologies results was illustrated. In the domain of multi-criteria supplier selection problem, a lot of criteria have been discussed. These criteria fall into two kinds: tangible criteria (quantitative variables) such that "number of enterprise in each region", and intangible criteria (qualitative variables) such that "specialization".

The data were collected from "Clarksons Research Studies" (CRS) for quantitative variable which provides a statistical and research service to Clarkson brokers, their clients and the shipping world in general. Four decisions makers in marine strategic purchasing were invited and asked to give the intangible criteria: two senior persons from the commercial department in National Navigation Company, one representative from maritime training institutions, and one representative from Misr maritime transportation company.

The developed model was applied to predict the Bulk Carrier order book for year 2012, 2013, and a comparison was made between the prediction and real data for Bulk Carrier order book for the same year. The correlation was (0.8039) and (0.9039), which means that both of the predictions and the real data follow the same direction together. The model was applied to predict Bulk Carrier order book for year 2014.

A rank for suitable shipyard region to build a new Bulk Carrier ship depending on the selected criteria based on experts working in this field was determined using FAHP methodology and TOPSIS. The model output for shipyard region rank was: 1.China, 2.Europe, 3.Japan and 4.South Korea. Also, Consensus Group Decision Making methodology gave the same result.

The model has some advantages compared to other similar models. For example, this model supports the decision makers to determine not only the best time to purchase the Bulk Carrier ship with minimum error than other best model error by (8.3%) but also the suitable region to purchase from, taking into consideration the qualitative variables. The degrees of risk index are also joined, so that decision makers can adjust them to match real context.

Finally, this work assists the decision makers in navigation companies making correct and accurate decisions in a simple way in a short time even if there is a big gap between them.

Table of Contents

Chapter:	1
----------	---

Introd	uctio	on1	L
1.1 Re	seard	ch Gap4	4
1.2 Th	esis (Objective	6
1.3 Th	esis I	Layout	6
Chapte	er 2		
Intelli	gent	Decision Support System and Fuzzy AHP (Background)	7
2.1 Fu	JZZY A	Analytical Hierarchy Process for Multi-criteria Supplier Selection in Supply	
Cl	hain		.7
2.1	1.1	Supplier Selection Problem	7
2.1	1.2	MCDM on Supplier Selection Problem	9
2.1	1.3	Analytic Hierarchy Process (AHP)	10
2.1	1.4	Fuzzy Set Theory	12
2.1	1.5	Fuzzy AHP	12
2.1	1.6	Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)	13
2.2 In	tellig	gent Decision Support Systems (IDSS)	.14
2.2	2.1	Introduction	14
2.2	2.2	Components of IDSS	15
2.2	2.3	IDSS Advantages	20
2.2	2.4	IDSS Limitations	21
2.3 Ca	atego	ories of Decision Making	21
2.3	3.1	By the Information Available	21
2.3	3.2	By the Properties of the Problem	.21
2.3	3.3	Other Category Methods	.22
2.4 M	letho	ods Used in Decision Making	.22
2.4	1.1	Multiple Criteria Decision Making	.22
2.4	1.2	Multiple Objective Decision Making	.23
2.4	1.3	Group Decision Making (MEDM)	.27

Chhapter 3

Concep	ts around the Bulk Carrier Shipyard Industry	25
3.1 Ship	oyard Life Cycle	25
3.1.	1 Negotiating and Financing the New Building	25
3.1.	2 The Shipyard Production Process	27
3.2 Cate	gories of Shipyard	30
3.3 Unit	s of Measurement	31
3.4 Cap	acity and Cost Competitiveness in Shipyard	32
3.5 The	Regional Distribution of Shipyard Capacity	34
3.6 Ship	yard Market Cycles	35
3.7 Ship	yard Prices	36
3.8 The	Economic Principles	37
СНАРТЕ	R 4	
Data Pr	eparation and Processing	41
4.1 Des	cribe Clarkson database	41
4.2 Data	a Collect, Processing and Statistical measurements	42
4.2.	1 Input and Output Time Series	42
4.2.2	2 The Selection of Independent Time Series	43
4.2.	B Pearson Correlation	44
4	.2.3.1 Pearson Correlations for the Current Time Series	44
4.3 Clas	sification of the selected data	45
4.4 Ship	yard Region Data Description	47
4.4.	1 Fuzzy Analytical Hierarchy Process Gathering Data	47
4	.4.1.1 Set up Criteria for Supplier Selection	47
4	.4.1.2 Measure the Tangible Criteria	48
4	.4.1.3 Measure the Intangible Criteria	49
4.4.2	2 Group Decision Making gathering Data	50

CHAPTER 5

Des	scription o	of the Proposed Intelligent Decision Support System for Shipyard	52
5.1	Overall	Structure of the Bulk Carrier Shipyard Model	52
5.2	Block Di	agram of Bulk Carrier Shipyard Model	54
	5.2.1 Bu	ulk Carrier Market Prediction	53
	5.2.2 D	etermine Suitable Region using FAHP	55
	5.2.2.1	Determine the Criteria	55
	5.2.2.2	Evaluate the Tangible and Intangible Criteria	55
	5.2.2.3	Construct Hierarchy Structures	55
	5.2.2.4	Determine the Fuzzy Judgment Matrix	56
	5.2.2.5	Determine the Fuzzy Performance Matrix	58
	5.2.2	2.5.1 Determine the Fuzzy Weight Vector	58
	5.2.2	2.5.2 Determine the Crisp Performance Matrix	60
	5.	2.2.5.2.1 Determine the interval Performance Matrix	60
	5.	2.2.5.2.2 Consider the Risk Defuzzification	61
	5.	2.2.5.2.3 Rank the Alternative Using TOPSIS	63
	5.2.3 D	etermine Suitable Region using CGDM	64
	5.2.3.1	Block Diagram for Consensus Group Decision Making Process	64
	5.2.3.2	The Group Decision Making Problem	65
	5.2.3.3	Resolution Method of the Group Decision Making Problem	65
	5.2.3.4	Consensus Model	66
CH	APTER 6		
Res	sults and I	Discussions	68
	6.1 Apply	ing Data to Multilayer Perceptron Neural Network	68
	6.1.1	Input and Output Data	69
	6.1.2	Training , Test and Production Rows	69
	6.1.3	Performance of the MLP Neural Network and Prediction	69
	6.1.4	Predict year 2013 with Real Data Comparison	70
	615	Predict year 2014	71

6.1.6 Analysis the Output71
6.2 Shipyard Suitable Region Ranking74
6.2.1 Using FAHP75
6.2.1.1 A Set of Input Data75
6.2.1.2 Attaining Fuzzy Judgment Matrix78
6.2.1.3 Attaining Fuzzy Performance Matrix78
6.2.1.3.1 Construct the Fuzzy Weight Vector78
6.2.1.3.2 The Weight Vector Output79
6.2.1.4 Fuzzy Performance matrix79
6.2.1.5 Calculate Crisp Performance Matrix80
6.2.1.6 Final Rank Supplier Program Output81
6.2.2 Using CGDM81
6.3 Discussion86
CHAPTER 7
Conclusion88
References
Appendix

List of Figures

Figure 2.1: General architecture of the hierarchy structure	11
Figure 2.2: Component of IDSS	15
Figure 2.3 Data Management Subsystem	17
Figure 2.4 Structure of Model Management	18
Figure 2.5 Schematic View of Dialog Management	20
Figure 2.6 Category of decision making problems	22
Figure 3.1 Shipyard market cycles	35
Figure 5.1 Block diagram of the developed Bulk Carrier Shipyard model	53
Figure 5.2 Multilayer perceptron for Bulk Carrier order book	54
Figure 5.3 A Hierarchy Structure of Shipyard model	56
Figure 5.4 . α -cut on each fuzzy performance score	60
Figure 5.5 . Triangular Fuzzy A number and its α -cut triangular fuzzy number	62
Figure 5.6. Block Diagram for Consensus Group Decision Making Process	64
Figure 6.1: Desired and Actual network order book output	70
Figure 6.2: Bulk Carrier order book for year 2014	71
Figure 6.3 Bulk Carrier fleet developments	72
Figure 6.4 Bulk Carrier deliveries	72
Figure 6.5 Bulk Carrier average earnings	73
Figure 6.6 Average Bulk Carrier freight rates	74
Figure 6.7 Bulk Carrier seaborne trades	74
Figure 6.8 Tangible criteria	75
Figure 6.9 Intangible Criteria	75
Figure 6.10 define the intangible criteria	76

Figure 6.11 True value	76
Figure 6.12 Interval value	77
Figure 6.13 Judgment matrix	78
Figure 6.14 pair wise comparison	78
Figure 6.15 The weight vector	79
Figure 6.16 The Performance matrix	79
Figure 6.17 crisp performance matrixes	80
Figure 6.18 Rank supplier matrix	81
Figure 6.19 Rank of Bulk Carrier shipyard region	85

List of Tables

Table 2.1	Saaty's 1-9 scale for AHP and its description	11
Table 4.1	Bulk Carrier order book	.41
Table 4.2	Bulk Carrier Fleet & Deliveries	.42
Table 4.3	Selected variable	.43
Table 4.4	Personal correlation for input and output time series	45
Table 4.5	Samples for input and output time series	.46
Table 4.6	Samples for input and output training rows	.46
Table 4.7	Samples for input and output test rows	.46
Table 4.8	Samples of year 2014 prediction months.	.47
Table 4.9	Shipyard Criteria	.48
Table 4.10	True value of each region with respect to all tangible criteria	.49
Table 4.11	1 Interval values of fuzzy rations with respect to each criterion	49
Table 4.12	2 Grades for decision makers for intangible criteria	49
Table 4.13	3 Preferences Form	.50
Table 4.14	4 Nine Preferences linguistic variable	.51
Table 5.1.	Linguistic term and its fuzzy ratio	.57
Table 5.2	linguistic terms of risk attitudes	.62
Table 6.1	Performance Results	69
Table 6.2	Actual and desired order book for year 2013	.70
Table 6.3	performance index with respect to risk attitudes	0
Table 6.4	Bulk Carrier shipyard order book for top region	

Abbreviations

AHP: Analytical Hierarchy Process **ANN:** Artificial Neural Network

BP: Back Propagation **CGT:** Capital Gain Tax

CGT: Compensated Gross Tonnage **CIM:** Character Institute of Marketing

CRS: Clarksons Research Studies

DBMS: Data Base Management System

DEA: Data Development Analysis

DGMS: Dialog Generation and Management System

DSS: Decision Support SystemDWT: Dead Weight Tonnage

FAHP: Fuzzy Analytical Hierarchy Process

FL: Fuzzy Logic

FPS: Fuzzy probability Simulation

GA: Genetic Algorithm.

GT: Gross Tonnage

IDSS: Intelligent Decision support system MCDM: Multi Criteria Decision Making MEDM: Multi Expert Decision Making

MLP: Multi Layer Perceptron

MODM: Multi Objective Decision Making

MP: Mathematical Programming

MSE: Mean Square Error

NMSE: Normalize Mean Square Error QFD: Quality Function Deployment SCM: Supply Chain Management SDT: Standard Displacement Tons

TOPSIS: Technique for Order Preference by Similarity to Ideal Solution

VLCC: Very Large Crude Carrier VMP: Vector Maximum Problem

Chapter 1

Introduction